МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«Национальный исследовательский ядерный университет «МИФИ» (НИЯУ МИФИ)

Дополнительная профессиональная программа (повышение квалификации)

Интеграция знаний о ядерной физике и технологиях в преподавание физики в атомных классах

Авторы курса: Колдобский Александр Борисович, доцент, к.ф.-м.н.

Ксенофонтов Александр Иванович, доцент, к.ф.-м.н.

Тихомиров Георгий Валентинович, зам. директора ИЯФиТ НИЯУ МИФИ, д.ф.-м.н., профессор

Раздел 1. Характеристика программы

1.1. Цель реализации программы. Совершенствование профессиональных компетенций обучающихся в области интеграции знаний о ядерной физике и технологиях в преподавание физики в атомных классах средней общеобразовательной школы.

Совершенствуемые компетенции:

No	Компетенция	Направление подготовки Педагогическое образование 44.03.01 Бакалавриат Код компетенции
		код компетенции
1	Способен участвовать в разработке основных и	ОПК-2
	дополнительных образовательных программ, раз-	
	рабатывать отдельные их компоненты (в том чис-	
	ле с использованием информационно-	
	коммуникационных технологий)	
2	Способен проектировать педагогическую	ОПК-8
	деятельность на основе специальных научных	
	знаний и результатов исследований	

1.2. Планируемые результаты обучения

No॒	Знать – уметь	Направление подготовки Педагогическое образование 44.03.01 Бакалавриат Код компетенции
1	Знать: 1. Примеры использования ядерных технологий в России и мире, воздействия радиации на живые организмы, современное состояние и перспективы развития атомной отрасли. 2. Методы интеграции знаний о ядерной физике и технологиях в обучение школьников в атомных классах на уровне среднего общего образования. 3. Стратегии проектирования учебных занятий по ядерной физике и технологиям в атомных классах. Уметь: Разрабатывать учебные занятия по ядерной физике и технологиям в атомных классах.	ОПК – 8
2	Знать: Стратегии проектирования образовательных программ по ядерной физике и технологиям с учетом	ОПК – 2, ОПК – 8

современных естественно-научных знаний в рамках обучения атомных классов.

Уметь:
Проектировать образовательные программы по ядерной физике и технологиям, а также составляю-

1.3. Категория обучающихся

щие ее модули в обучении атомных классов

Уровень образования — высшее образование, область профессиональной деятельности — обучение физике в атомных классах на уровне среднего образования.

1.4. Форма обучения

Форма обучения: очная.

- **1.5.** Режим занятий: 6 календарных дней по 6 часов, в том числе 26 аудиторных часов и 10 часов самостоятельной работы.
 - 1.6. Трудоемкость программы: 36 ч.

Раздел 2. Содержание программы

2.1 Учебный план

№	Науманарамуа жаз	Аудиторные учебные заня- тия			Внеаудитор- ная работа	A	Тру
п/ п	Наименование разделов, модулей и тем	Всего аудит. часов	Лекции	Практи- ческие занятия	Самост. работа	Форма контроля	Грудоем- кость
1	Модуль 1. Атомы и молекулы. Элементы и изотопы. Периодическая таблица и карта нуклидов.	8	4	4	3	Тестирова- ние	11
2	Модуль 2. Природные источники радиации и природный радиационный фон. Разработка учебного занятия по ядерной физике и технологиям в атомных классах	6	3	3	4	Проект № 1	10
3	Модуль 3. Воздействие радиации на живые организмы.	6	3	3	5	Проект № 2	11

4	Разработка образовательной программы по ядерной физике и технологиям, а также составляющих ее модулей для преподавания в атомных классах. Итоговая аттестация	4		4		Зачет на основании совокупности выполненных проектов, результата тестирования и защиты проекта №2.	4
Ит	ого:	24	10	14	12	_	36
Общий итог:						36	

2.2 Учебная программа

Содержание курса

Тема	Виды учебных занятий / учеб- ных работ	Содержание
Модуль 1. Атомы и молекулы. Элементы и изотопы. Периодическая таблица и карта нуклидов.	Лекция. 4 часа	История освоения ядерной энергии. Роль ядерных технологий в современном мире и перспективы их развития. Ядерные технологии России. Госкорпорация «Росатом». Современная атомная энергетика. Глобальные источники энергии и мировое потребление энергии. Неэнергетические применения ядерной энергии. Ядерная медицина. Использование источников ионизирующего излучения в промышленности и сельском хозяйстве. Радиоизотопные термоэлектрические генераторы (РИТЭГ). Ядерная энергия в космосе.
	Практические занятия. 4 часа	Обсуждения роли ядерных технологий в современном мире и перспективы их развития. Проведение сравнительного анализа ядерных технологий России и других стран мира. Поиск примеров неэнергетического использования ядерной энергии. Обсуждение роли и места ядерной медицины в отрасли здравоохранения. Рассмотрение роли источников ионизирующе-

	1	
		го излучения в промышленности и сельском
		хозяйстве и поиск их аналогов.
	Самостоятельная	Тестирование из 20 вопросов закрытого типа,
	работа, 3 часа	сформированное на основе изученного матери-
		ала.
Модуль 2. Природные ис-	Лекция. 3 часа	Ионизирующие излучения, их источники. По-
точники радиации и при-		нятия плотности потока излучения и активно-
родный радиационный		сти источника. Единицы измерения радиаци-
фон.		онной физики. Дозы облучения, их виды (по-
Разработка учебного за-		глощённая, эквивалентная, эффективная) и
нятия по ядерной физике		взаимосвязь. Мощность дозы как самостоя-
и технологиям в атомных		тельная качественная характеристика воздей-
классах.		ствия излучения.
		Основные характеристики радионуклидов. Ти-
		пы распада. закон радиоактивного распада, по-
		стоянная распада, период полураспада. При-
		родные радионуклиды. Структура среднепла-
		нетной фоновой дозы, её естественные и тех-
		ногенные составляющие. Региональные вариа-
		ции фоновой дозы. Роль фоновой дозы при
		нормировании облучения населения. Линейная
		беспороговая гипотеза воздействия излучения,
		консервативность её концепции. Отношение
		широких масс населения к атомной энергетике
		и радиационным технологиям. "Атомные стра-
		хи" и их причины. Синдром NIMBY. Техноло-
		гические риски и крупные техногенные ава-
		рии. Шкала ИНЕС как основа классификации
		радиационных происшествий, критерии её
		формирования. Наиболее серьёзные ядерные и
		радиационные аварии. Статистика пострадав-
		ших в них в СССР и России. Уроки Чернобы-
		NR.
		Методы интеграции знаний о ядерной физике
		и технологиях в обучение школьников в атом-
		ных классах на уровне среднего общего обра-
		зования.
		Стратегия проектирования учебных занятий по
		ядерной физике и технологиям в атомных
	-	классах.
	Практические	Решение задач по теме лекции. Анализ отно-
	занятия. 3 часа	шения широких масс населения к атомной
		энергетике и радиационным технологиям. Об-
		суждение возможных путей увеличения осве-
		домленности населения, касаемо атомной
		энергетики. Рассмотрение последствий серьез-
		ных ядерных и радиационных аварий на созна-
		ние общества.
	Самостоятельная	Проект №1
	работа, 4 часа	1. Разработка учебного занятия по ядерной
		физике и технологиям в атомных классах.

		2. Подготовка в формате презентации проек-
		та учебной программы занятия по ядерной фи-
M 2 D ~	п 2	зике и технологиям в атомных классах.
Модуль 3. Воздействие	Лекция. 3 часа	Действие ионизирующих излучений на орга-
радиации на живые орга-		низм человека. Стохастические и детерминист-
низмы.		ские эффекты Хроническая лучевая болезнь.
Разработка образователь-		Внешнее, внутреннее и смешанное облучение.
ной программы по ядер-		Критические органы при внутреннем облуче-
ной физике и технологи-		нии. Иодная блокада. Основные принципы за-
ям, а также составляющих		щиты от переоблучения. Принципы ALARA и
ее модулей для препода-		их практическая реализация. Юридические ос-
вания в атомных классах.		новы обеспечения радиационной безопасности
		(ФЗ). Важнейшие подзаконные нормативные
		документы (НРБ и ОСПОРБ), их содержание и
		структура. Аппаратурное обеспечение радиа-
		ционной безопасности, простейшие радиомет-
		ры и дозиметры. Основы индивидуальной до-
		зиметрии. Особая роль радона при формирова-
		нии фоновой дозы, её учёт действующими нормативами и практическими действиями.
		•
		Системы национального радиационного кон-
		троля в России (ЕГАСМРО и АСКРО), их информационные ресурсы и доступ к ним.
		Стратегия проектирования образовательных
		программ по ядерной физике и технологиям с
		учетом современных естественно-научных
		знаний в рамках обучения атомных классов.
	Проктиноскио	Поиск примеров действия ионизирующего из-
	Практические занятия, 3 часа	лучения на организм человека. Решение задач
	занятия, з часа	по теме лекции. Ознакомление с нормативны-
		ми документами. Практическое использование
		информационных ресурсов системы нацио-
		нального радиационного контроля в России.
	Самостоятельная	Проект №2
	работа, 5 часов	Проект №2 Разработка образовательной программы по
	paoora, J sacob	ядерной физике и технологиям, а также со-
		ставляющих ее модулей для преподавания в
		атомных классах.
Итоговая аттестация	Самостоятельная	Защита Проекта №2
	работа, 4 часа	Зачет на основании совокупности выполнен-
		ных проектов, результата тестирования и за-
		щиты Проекта №2.

Раздел 3. Формы аттестации и оценочные материалы

Тестирование по итогам изучения Модуля 1

Примеры вопросов тестирования:

1. Какая страна имеет больше всех работающих энергетических ядер
ных реакторов? Выберите один вариант ответа:
а. Россия
б. США
в. Япония
г. Китай
д. Франция
2. Какая страна имеет наибольшую долю выработки электроэнергии н
АЭС? Выберите один вариант ответа:
а. Россия
б. США
в. Япония
г. Китай
д. Франция
3. Период полураспада радиоактивного изотопа - 1 год. За какое врем
распадается четверть от первоначального числа ядер этого изотопа? Выберит
один вариант ответа:
а. 0.2 года
б. 0.4 года
в. 0.6 года
г. 0.8 года
4. Средняя энергия нейтронов деления приблизительно равна Выбо
рите один вариант ответа:
а. 0.5 МэВ
б. 1 МэВ
в. 2 МэВ
г. 10 МэВ
5. Какая ядерная реакция, в основном, приводит к накоплению в теплово
реакторе элементов с $Z > 92$? Выберите один вариант ответа:

- а. деления
- б. (n, 2n)
- B. (n, p)
- г. радиационного захвата
- 6. Осколки, образующиеся в результате реакции деления тяжелых ядер, как правило, испытывают распад _____. Выберите один вариант ответа:
 - а. альфа
 - б. бета-минус
 - в. бета-плюс
 - г. все перечисленные

Критерии оценивания тестирования: выполнено / не выполнено.

Тестирование успешно пройдено, если результат — 60 и более процентов выполнения заданий.

Проект № 1

- 1. Разработка учебного занятия по ядерной физике и технологиям в атомных классах.
- 2. Подготовка в формате презентации проекта учебного занятия по ядерной физике и технологиям в атомных классах.

Требования к разработке (Проект № 1):

Разработка осуществляется на основании стратегии проектирования учебных занятий по физике с учетом современных естественно-научных и физико-инженерных знаний в рамках обучения атомных классов.

В презентации должен быть представлена структура учебного занятия по ядерной физике и технологиям на основе знаний и задач, посвященных теме роли ядерных технологий в современном мире и перспективам их развития, современной атомной энергетики: план проведения занятия с поэтапным ходом урока с указанием промежутка времени, этапы занятия, описание теоретической и прак-

тической частей занятия, этап самостоятельной работы, учебно-методическая база

и интернет-источники.

Критерии оценивания:

- выполнены все требования к разработке проекта;

- логическая связность;

- доходчивость изложения материала для школьников атомных классов.

Оценивание: зачет/незачет

Проект № 2

Разработка образовательной программы по ядерной физике и технологиям,

а также составляющих ее модулей для преподавания в атомных классах.

Требования к работе (Проект № 2):

Разработка осуществляется на основании стратегии проектирования образо-

вательных программ по ядерной физике и технологиям с учетом современных

естественно-научных знаний в рамках обучения атомных классов.

Проект должен содержать цели и задачи образовательной программы, обос-

нование ее актуальности, планируемые результаты обучения, содержание про-

граммы, формы контроля и аттестации, информацию об учебно-информационном

обеспечении программы.

Критерии оценивания:

- выполнены все требования к разработке проекта;

- наличие структурно-логических связей между определёнными компонен-

тами модуля (названием, целью, планируемыми результатами, содержанием, оце-

ночными материалами);

- чёткое определение оценочных средств результатов освоения модуля;

- четкое определение организационно-педагогических условий для реализа-

ции модуля.

Оценивание: зачет/незачет

8

Итоговая аттестация - на основании совокупности выполненных проектов, результата тестирования и защиты Проекта №2.

Раздел 4. Организационно-педагогические условия реализации программы

4.1. Учебно-методическое обеспечение и информационное обеспечение программы

Основная литература

- 1. Акатов А.А., Коряковский Ю.С.. Радиация: говорят, что... АНО «ИЦАО», 2012.
- 2. Акатов А.А., Коряковский Ю.С.. Энергия атома: открытия, изобретения, технологии. АНО «ИЦАО», 2017.
- 3. Арутюнян Р.В. Ядерная рулетка : В 2 т. Т. 1 : Чернобыль Фукусима: Путевые заметки ликвидатора / Рафаэль Арутюнян; Ин-т проблем безопасного развития атомной энергетики РАН. М., 2019. 387 с.
- 4. Гагаринский А.Ю.. Люди и атом. Откуда мы пришли и куда идём. М., НИЦ «КИ», 2014.
- 5.
 Колдобский А.Б.. 100 вопросов и ответов об атомной энергетике.

 ТВЭЛ,
 2018.
 Доступно по:

 https://rosatom.ru/upload/iblock/cbe/cbeddaf18927253446f5def5070608e9.pdf
- 6. Колдобский А.Б.. Атомная энергия: первое знакомство. М. : Кучково поле Музеон, 2020. 128 с.
- 7. Мелихова Е. М., Абалкина И.Л.. Диалог по вопросам риска. М., Издат, 2003.
- 8. Новиков Г.А. Обеспечение безопасности в области использования атомной энергии: учебник / Г.А. Новиков, О.Л. Шашлыков, С.Е. Щеклеин. Екатеринбург: Изд.-во Урал ун-та, 2017. 552 с.
- 9. Радиация: эффекты и источники / Научный комитет ООН по действию атомной радиации (НКДАР). 2016

- 10. Тошинский Г.И. Беседы о ядерной энергетике, физике реакто-ров и технологии модульных быстрых реакторов с теплоносителем свинец-висмут: для начинающих и не только. М.: Проспект, 2021. 480 с.
- 11. Федоров В.М. Солнечная радиация и климат земли [Текст] / В. М. Федоров. Москва : Физматлит, 2018. 231 с.

Дополнительная литература

- 1. Абалкина И.Л., Марченко Т.А., Панченко С.В.. Чернобыльская радиация в вопросах и ответах. М., ИБРАЭ РАН, 2006.
- 2. Климов А.Н.. Ядерная физика и ядерные реакторы. М., Энергоатомиздат, 2002, с. 99.
- 3. Колдобский А.Б.. Ионизирующие излучения биологическое воздействие. Библиотечка «Первого сентября», серия «Физика», вып. 2/2005. М., «Чистые пруды», 2005.
- 4. Иродов И.Е.. Квантовая физика основные законы. М., Лаборато-рия Базовых Знаний, 2001, с. 199.

4.2. Интернет-ресурсы

- 1. Сайт Госкорпорации «Росатом». URL: https://www.rosatom.ru/
- 2. Сайт население Земли. URL: https://countrymeters.info/ru/World
- 3. Сайт BP (Отчеты о потреблении энергии). URL: https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy.html
 - 4. Caŭt PRIS MAΓATЭ. URL: https://pris.iaea.org/PRIS/home.aspx
 - 5. Caйт MAГAТЭ. URL: https://www.iaea.org/

4.3. Материально-технические условия реализации программы

Компьютерное и мультимедийное оборудование, обеспечивающее образовательный процесс.