МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«Национальный исследовательский ядерный университет «МИФИ» (НИЯУ МИФИ)

Дополнительная профессиональная программа (повышение квалификации)

Особенности обучения школьников элементам разработки робототехнических устройств

(курс «Робототехника» в ИТ-классах московской школы)

Направление: проект ДОНМ «ИТ-класс в московской школе»

Авторы курса:

Климов В.В., кандидат технических наук, Института заместитель директора кибернетических интеллектуальных систем НИЯУ МИФИ Барышев Г.К., старший преподаватель кафедры конструирования приборов и установок НИЯУ МИФИ инженер кафедры А.П., Бирюков конструирования приборов и установок нияу мифи

Раздел 1. «Характеристика программы»

1.1. Цель реализации программы

Совершенствование профессиональных компетенций слушателей в области особенностей обучения школьников элементам разработки робототехнических устройств в рамках курса «Робототехника» в ИТ-классах московской школы.

Совершенствуемые компетенции

№	Компетенции	Направление подготовки Педагогическое образование 44.03.01 Бакалавриат Код компетенции
1.	Способен организовывать совместную и индивидуальную учебную и воспитательную деятельность обучающихся, в том числе с особыми образовательными потребностями, в соответствии с требованиями федеральных государственных образовательных стандартов	ОПК-3
2.	Способен понимать принципы работы современных информационных технологий и использовать их для решения задач профессиональной деятельности	ОПК-9

1.2. Планируемые результаты обучения

Nº	Уметь – знать	Направление подготовки Педагогическое образование 44.03.01 Бакалавриат Код компетенции
1.	Уметь: выполнять сборку модели микроконтроллера на основе базовых операций при работе с микроконтроллерами Arduino на платформе Tinkercad при разработке робототехнических устройств Знать: основы работы с микроконтроллерами Arduino UNO на базе платформы Tinkercad при разработке робототехнических устройств; алгоритм сборки модели микроконтроллера на основе базовых операций при работе с микроконтроллерами	ОПК-9

	Arduino на платформе Tinkercad при разработке	
	робототехнических устройств	
	Уметь: создавать электронные схемы и печатные платы простейших устройств в программе EasyEDA при разработке робототехнических устройств.	
2.	Знать: — основы разработки электронных схем и печатных плат на базе программы EasyEDA при разработке робототехнических устройств; — алгоритмы построения электронных схем и печатных	ОПК-9
	плат с помощью программы EasyEDA.	
3.	Уметь: проводить инженерные расчеты кинематических схем при разработке робототехнических устройств. Знать: основы проведения инженерных расчетов кинематических схем при разработке робототехнических устройств; алгоритм инженерного расчета кинематических схем для различных видов механизмов.	ОПК-9
4.	уметь: разрабатывать учебные занятия, ориентированные на организацию совместной и индивидуальной учебной деятельности школьников ИТ-классов по разработке элементов робототехнических устройств в рамках обучения по курсу «Робототехника» в ИТ-классах московской школы Знать: — особенности обучения школьников в рамках курса «Робототехника»; — стратегию разработки учебных занятий, ориентированных на организацию совместной и индивидуальной учебной деятельности школьников ИТ-классов по разработке элементов робототехнических устройств в рамках курса «Робототехника».	ОПК-3, ОПК-9

- **1.3. Категория обучающихся:** уровень образования ВО, область профессиональной деятельности обучение школьников в рамках проекта ДОНМ «ИТ-класс в московской школе»
 - 1.4. Форма обучения: очная с ДОТ
 - 1.5. Режим занятий: 1 раз в неделю по 6 часов.
 - 1.6 Трудоемкость программы: 36 часов.

Раздел 2. «Содержание программы»

1.1. Учебный (тематический) план

		Аудиторные учебные занятий, учебные работы		Внеаудит орная работа	троля	сть	
№ п/п	Наименование разделов (модулей) и тем	Всего ауд.,час.	Лекции.	Практические занятия	Самостоятельная работа	Формы контроля	Трудоемко
1.	Модуль 1. Элементы разработки робототехнических устройств в рамках обучения ИТ-классов московской школы	18	6	12	9		27
1.1	Основы работы с микроконтроллерами Arduino UNO на базе платформы Tinkercad при разработке робототехнических устройств	6	2	4	3	Практическая работа №1	9
1.2	Основы разработки электронных схем и печатных плат на базе программы EasyEDA при разработке робототехнических устройств	6	2	4	3	Практическая работа №2	9
1.3	Основы проведения инженерных расчетов кинематических цепей при разработке робототехнических устройств	6	2	4	3	Практическая работа №3	9

2	Модуль 2. Обучение школьников элементам разработки робототехнических устройств в рамках курса «Робототехника» в ИТ-классах московской школы	4	4		5		9
2.1	Особенности обучения школьников в рамках курса «Робототехника»	4	4		5	Практическая работа №4	9
	Итоговая аттестация	22	10	12	14	Зачет на основании совокупности результатов, выполненных на положительную оценку практических работ №№ 1 – 4	36

2.2. Учебная программа

№ п/п	Виды учебных занятий, учебных работ	Содержание				
Модуль1. Элементы разработки робототехнических устройств в рамках обучения ИТ классов московской школы						
Тема 1.1 Основы работы с микроконтроллерами Аrduino UNO на базе платформы Tinkercad при разработке робототехнических устройств	Лекция, 2 часа	Основные понятия робототехники. Микроконтроллеры Arduino. Интерфейс платформы Tinkercad. Основные операции и алгоритмы при работе с микроконтроллерами Arduino UNO на платформе Tinkercad. Алгоритм сборки модели микроконтроллера на основе базовых операций при работе с микроконтроллерами Arduino на платформе Tinkercad при разработке робототехнических устройств.				

	Практическое	Работа в малых группах.
	занятие, 4 часа	Тренинг №1
		Отработка выполнения базовых
		операций при работе с
		микроконтроллерами Arduino на
		платформе Tinkercad. Подключение
		микроконтроллера к ПК, его
		программирование. Подсоединение к
		микроконтроллеру периферийных
		устройств (цифровых и аналоговых
		датчиков). Вывод данных на экран ПК.
		Комбинированное подключение и
		обработка сигналов с нескольких
		устройств.
		Сборка модели микроконтроллера.
	Самостоятельная	Практическая работа №1
	работа, 3 часа	На онлайн-платформе Tinkercad
		выполнить сборку модели
		микроконтроллера, осуществляющего
		заданные операции (задания и набор
	-	операций определяет преподаватель)
Тема 1.2	Лекция, 2 часа	Основные понятия в области разработки
Основы разработки		электронных схем и печатных плат.
электронных схем и		Интерфейс и сервисы программы
печатных плат на базе		EasyEDA.
программы EasyEDA при		Принципы и алгоритмы построения
разработке робототехнических		электронных схем и печатных плат с помощью программы EasyEDA.
устройств	Практическое	Работа в малых группах.
yerponers	занятие, 4 часа	Тренинг №2
	запитие, ч паса	Отработка создания электронных схем и
		печатных плат в программе EasyEDA
		при разработке робототехнических
		устройств.
		1
	Самостоятельная	Практическая работа №2
	работа, 3 часа	Создать электронную схему и печатную
		плату простейшего устройства в
		программе EasyEDA (тип и
		характеристики устройства определяет преподаватель)
Тема 1.3	Лекция, 2 часа	Основные понятия в области
Основы проведения	лекция, 2 часа	инженерных расчетов кинематических
инженерных расчетов		схем: кинематические цепи в механике
кинематических схем при		и инженерии, кинематические пары,
разработке		виды механических передач.
робототехнических		Основные характеристики
устройств		механических передач. Расчет и
7		кинематических схем.
		Алгоритм инженерного расчета
		кинематических схем для различных
	1	1
		видов механизмов.

	Практическое	Работа в малых группах.
	-	
	занятие, 4 часа	Тренинг №3
		Отработка алгоритма расчета
		кинематических схем для различных
		видов механизмов при разработке
		робототехнических устройств.
	Самостоятельная	Практическая работа №3
	работа, 3 часа	По заданной кинематической схеме
		определить ее недостающие параметры,
		проведя соответствующие расчеты (тип
		кинематической схемы определяет
		преподаватель)
Модуль2. Обучение шко	льников элемен	· · · · · · · · · · · · · · · · · · ·
		ИТ-классах московской школы
Тема 2.1	Лекция, 4 часа	Специфика курса «Робототехника» в
Особенности обучения		ИТ-классах московской школы.
школьников в рамках		Особенности обучения школьников ИТ-
курса «Робототехника»		классов основам и элементам
lipes (a see re remine)		разработки робототехнических
		устройств в рамках курса
		«Робототехника».
		Стратегия разработки учебных занятий,
		ориентированных на организацию
		совместной и индивидуальной учебной
		деятельности школьников ИТ-классов
		по основам разработки элементов
		робототехнических устройств в рамках
		курса «Робототехника».
	Самостоятельная	Практическая работа №4
	работа, 5 часа	Разработка учебного занятия,
		ориентированного на организацию
		совместной и индивидуальной учебной
		деятельности школьников ИТ-классов
		по основам разработки элементов
		робототехнических устройств в рамках
		курса «Робототехника» (тема по выбору
		обучающихся)
Итоговая аттестация	Зачет	Зачет на основании совокупности
ттоговал аттеотация	Su 101	результатов, выполненных на
		* *
		положительную оценку практических
		работ №№ 1 – 4

Раздел 3. «Формы аттестации и оценочные материалы»

3.1 Текущий контроль

Практическая работа №1

Tinkercad Ha онлайн-платформе сборку выполнить модели

микроконтроллера, осуществляющего заданные операции

Вариант задания:

На онлайн-платформе Tinkercad выполнить сборку модели устройства,

позволяющего измерить время реакции человека на раздражитель. В качестве

раздражителя может выступать диод или пьезоэлемент, подающий сигнал в

случайный момент времени с момента начала программы, в качестве

приемника – тактовая кнопка. Управляющая программа устройства должна

засекать время между включением раздражителя и моментом нажатия на

получаемый результат кнопку выводить В миллисекундах на

подключенный к контроллеру дисплей.

Требования к работе: работа осуществляется на основании алгоритма

работы с микроконтроллерами Arduino UNO на платформе Tinkercad.

Критерии оценивания:

1. Все шаги алгоритма выполнены правильно в полном объеме.

2. Устройство корректно выполняет заданные операции по заранее

определенным сигналам.

3. Устройство выводит на дисплей корректный результат.

Оценивание: зачет/незачет

Практическая работа №2

Создать электронную схему и печатную плату простейшего устройства

программе EasyEDA (тип и характеристики устройства определяет

9

преподаватель).

Вариант задания:

Разработать печатную электронную схему И создать плату

электрического преобразователя по заданному алгоритму с использованием

сервисов программы EasyEDA.

Требования к работе: работа осуществляется на основании алгоритма

создания электронных схем и печатных плат в программе EasyEDA.

Критерии оценивания:

1. Все шаги алгоритма выполнены правильно в полном объеме.

2. Рабочая электронная схема и печатная плата соответствуют

заданным требованиям к устройству.

3. Все технологические операции выполнены корректно.

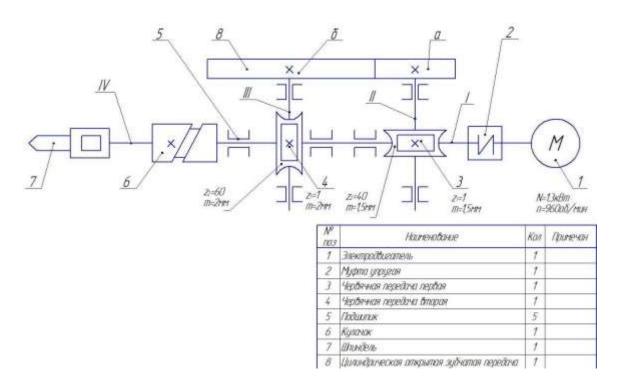
Оценивание: зачет/незачет

Практическая работа №3

По заданной кинематической схеме определить ее недостающие

параметры, проведя соответствующие расчеты (тип кинематической схемы

определяет преподаватель)


Вариант задания:

На рисунке приведена кинематическая схема конструкции с описанием

C параметров некоторых элементов. помощью алгоритма расчета

кинематических схем указать недостающие параметры подвижных элементов

данной схемы.

Требования к работе: работа осуществляется на основе алгоритма расчета кинематических передач для различных видов механизмов

Критерии оценивания:

- 1. Все шаги алгоритма выполнены правильно в полном объеме.
- 2. Перечень недостающих параметров кинематической схемы определен корректно.
- 3. Числовые значения недостающих параметров кинематической схемы определены корректно.

Оценивание: зачет/незачет

Практическая работа №4

Разработка учебного занятия, ориентированного на организацию совместной и индивидуальной учебной деятельности школьников ИТ-классов по основам разработки элементов робототехнических устройств в рамках курса «Робототехника» (тема по выбору обучающихся)

Требования к работе: работа осуществляется на основании стратегии

разработки учебных занятий, ориентированных на организацию совместной

индивидуальной учебной деятельности школьников ИТ-классов по

разработке элементов робототехнических устройств в рамках курса

«Робототехника».

Критерии оценивания:

1. Все шаги стратегии выполнены правильно в полном объеме.

Содержание учебного занятия соответствует возрастным И

психологическим особенностям учащихся.

3. Содержание и процесс учебного занятия, ориентированы на

достижение запланированных результатов за счет активной познавательной

деятельности учащихся.

4. Совместная И индивидуальная деятельность обучающихся

организована с учетом специфики содержания выбранной темы курса.

5. Запланирована система осуществления постоянной обратной

связи относительно успешности учения обучающихся.

6. Запланирована рефлексия и саморефлексия относительно этапов

деятельности ПО достижению содержательно-критериально заданных

результатов.

Оценивание: зачет/незачет

3.2 Итоговая основании совокупности аттестация: зачет на

результатов, выполненных на положительную оценку практических работ

 N_0N_0 1 − 4.

Опенивание: зачет/незачет.

Раздел 4. «Организационно-педагогические условия реализации программы»

1. Учебно-методическое обеспечение и информационное обеспечение программы

Нормативные документы.

- 1. Федеральный закон «Об образовании в Российской Федерации» от 29 декабря 2012 № 273-ФЗ.
- Федеральный государственный образовательный стандарт основного общего образования. Утвержден приказом Министерства образования и науки Российской Федерации от 22 февраля 2018 г. № 121.

Интернет-ресурсы по теме программы:

- 1. Обучение Tinkercad [Электронный ресурс]. Режим доступа: https://www.tinkercad.com/learn (дата обращения: 07.04.2022)
- 2. Руководство по Arduino [Электронный ресурс]. Режим доступа: https://alexgyver.ru/arduino_lessons/ (дата обращения: 07.04.2022)
- 3. Руководство по работе с EasyEDA для начинающих [Электронный ресурс]. Режим доступа: https://blog.dubkov.org/electronics/easyeda-starter-guide/ (дата обращения: 07.04.2022)

Литература.

Основная литература

- 1. Кангин, В. В. Контроллеры Arduino в мобильных роботах / В. В. Кангин. Старый оскол : Тонкие наукоемкие технологии, 2021. 396 с.
- 2. Благодинова, В. В. Основы работы в онлайн-3D-редакторе TINKERCAD : учебное пособие / В. В. Благодинова. Нижний Новгород : Нижегородский институт развития образования, 2021. 68 с.

3. Дюндик, О.С. Строение и кинематика механизмов : учеб. пособие / О.С. Дюндик. – Омск : Изд-во ОмГТУ, 2017. – 144 с.

Дополнительная литература

- 1. Ramos, E. Arduino Basics. In: Arduino and Kinect Projects / E. Ramos. Berkeley: Apress, 2012. 22 p.
- 2. Jacob, F., Alberto, A., Guimarães, P. Use of Tinkercad platform for Teaching Electronics Subject in Post-Secondary Technical Courses // ACM International Conference Proceeding Series, 26 October 2021, Pp. 543-547.

2. Материально-технические условия реализации программы

Оборудование лабораторного комплекса ИТ-классов в организации предпрофессионального образования по проекту «ИТ-класс в московской школе».

Необходим персональный компьютер с минимальными системными требованиями:

- Процессор: Intel или AMD процессор с поддержкой инструкций не ниже SSE2
 - Видео: видеокарта с поддержкой OpenGL 2.0
 - Память: 2Гб и больше
 - Место на диске: 8Гб и больше
 - Операционная система: Windows 7 SP1, 8,1, 10
 - Предустановленное ПО EasyEDA.