Министерство образования и науки Российской Федерации

Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский ядерный университет «МИФИ»

Университетский лицей № 1511 предуниверситария НИЯУ МИФИ

Утверждаю

Руководитель Университетского лицея №1511 предуниверситария НИЯУ МИФИ

___М.В.Мазурина

РАБОЧАЯ ПРОГРАММА МАТЕМАТИКА

9 классы

Согласовано

Заведующий методическим

объединением учителей математики

лицея

Шаврин О.А

«ДТ» авгуска 2020_ г.

Разработчики:

учитель математики

Предуниверситария НИЯУ МИФИ

Барченков А.Н.

Москва 2020

Пояснительная записка

Рабочая программа по математике для 9 класса составлена на основе следующих документов:

- Закон «Об образовании в Российской Федерации» от 29.12.2012 г. №273-Ф3
- Приказ Министерства образования и науки Российской
 Федерации от 17.12.2010 года № 1897 «Об утверждении
 федерального государственного образовательного стандарта
 основного общего образования»,
- Основная образовательная программа основного общего образования Университетского лицея №1511 предуниверситария НИЯУ МИФИ.
- 4. Приказ МинОбрНауки России от 31.12.2015 г. №1577

Вклад учебного предмета в общее образования: Цели обучения математики в общеобразовательной школе определяются ее ролью в развитии общества в целом и формировании личности каждого отдельного человека.

Исторически сложились две стороны назначения математического образования: практическая, связанная с созданием и применением инструментария необходимого человеку в его продуктивной деятельности, и духовная, связанная с мышлением человека, с владением определенным методом познания и преобразования мира математическим методом.

Особенности Рабочей программы по предмету: Представляемая не предназначена для специализированных математических школ, а предлагается для изучения в классах с повышенной математической содержание подготовкой. В программе реализовано программы общеобразовательной школы, а отличие состоит в более глубоком изучении соответствующих вопросов курса. В перечень используемого дополнительного материала входят: неравенства с модулями и иррациональные неравенства;

задачи с параметрами; специальные методы решения систем уравнений; корни п-ой степени, обобщение понятия степени; формулы тригонометрии. Это дополнительные главы математики, которые гармонично вписались в программу углубленного изучения в классах с повышенной математической подготовкой. Таким образом, увеличено количество часов на 2 часа в неделю за счет часов образовательной программы, формируемый участниками образовательного процесса.

Общие цели учебного предмета: Роль математической подготовки в общем образовании современного человека ставит следующие цели обучения математики в школе:

-овладение конкретными математическими знаниями необходимыми для применения в практической деятельности для изучения смежных дисциплин для продолжения образования

- интеллектуальное развитие учащихся, формирование качеств мышления характерных для математической деятельности и необходимых для продуктивной жизни в обществе
- формирование представлений об идеях и методах математики, о математике как форме описания и методе познания действительности

-формирование представлений о математике как части общечеловеческой культуры, понимание значимости математики для общественного прогресса.

Сроки реализации Рабочей программы: программа рассчитана на 1 год.

Общая характеристика учебного предмета

Структура и специфика курса: Целью изучения курса алгебры является развитие вычислительных и формально-оперативных алгебраических умений до уровня, позволяющего уверенно использовать их при решении задач математики и смежных предметов (физика, основы информатики и вычислительной техники и др.), освоение аппарата решений уравнений и

неравенств как основного средства математического моделирования прикладных задач, осуществление функциональной подготовки школьников.

Целевые установки для класса:

- бегло и уверенно выполнять арифметические действия над числами, производить прикидку и оценку результатов вычислений; производить вычисления значений синуса, косинуса, тангенса, в том числе с помощью таблиц и калькулятора;
- свободно владеть техникой тождественных преобразований целых и дробных

рациональных выражений, выражений, содержащих корни и степени с дробными показателями, тригонометрических выражений; составлять выражения и формулы, выражать из формулы одну переменную через другие;

- находить значения функций, заданных формулой, таблицей, графиком;
- проводить исследование функций указанных в программе видов элементарными средствами, строить и преобразовывать графики функций;
- усвоить основные приемы решения уравнений, неравенств указанных в программе видов; решать уравнения с параметрами, сводящиеся к линейным или квадратным;
 - решать текстовые задачи;
- овладеть основными алгебраическими приемами и методами и применять их при решении задач;
 - выполнять простейшие тригонометрические преобразования;
- строить графики линейной функции; квадратичной функции, обратной пропорциональности, квадратного и кубического корня;
- решать линейные, квадратные, рациональные и простейшие иррациональные уравнения, уравнения высших степеней, сводящиеся к квадратным, системы уравнений с двумя и более переменными.

ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОСВОЕНИЯ УЧБЕНОГО ПРЕДМЕТА

Система оценки достижения планируемых результатов освоения основной образовательной программы основного общего образования предполагает комплексный подход к оценке результатов образования, позволяющий вести оценку достижения обучающимися всех трёх групп результатов образования: личностных, метапредметных и предметных.

Система оценки предусматривает *уровневый подход* к содержанию оценки и инструментарию для оценки достижения планируемых результатов, а также к представлению и интерпретации результатов измерений.

Одним из проявлений уровневого подхода является оценка индивидуальных образовательных достижений на основе «метода сложения», при котором фиксируется достижение уровня, необходимого для успешного продолжения образования и реально достигаемого большинством учащихся, и его превышение, что позволяет выстраивать индивидуальные траектории движения с учётом зоны ближайшего развития, формировать положительную учебную и социальную мотивацию.

Система оценки достижения планируемых результатов освоения основной образовательной программы основного общего образования предполагает комплексный подход к оценке результатов образования, позволяющий вести оценку достижения обучающимися всех трёх групп результатов образования: личностных, метапредметных и предметных.

Система оценки предусматривает *уровневый подход* к содержанию оценки и инструментарию для оценки достижения планируемых результатов, а также к представлению и интерпретации результатов измерений.

Одним из проявлений уровневого подхода является оценка индивидуальных образовательных достижений на основе «метода сложения», при котором фиксируется достижение уровня, необходимого для успешного продолжения образования и реально достигаемого большинством учащихся, и

его превышение, что позволяет выстраивать индивидуальные траектории движения с учётом зоны ближайшего развития, формировать положительную учебную и социальную мотивацию.

Без базовой математической подготовки невозможно стать образованным современным человеком. В школе математика служит опорным предметом для изучения смежных дисциплин. В после школьной жизни реальной необходимостью в наши дни является непрерывное образование, что требует полноценной базовой общеобразовательной подготовки, в том числе и математической. И наконец, все больше специальностей, где необходим высокий уровень образования, связано с непосредственным применением математики (экономика, бизнес, финансы, физика, химия, техника, информатика, биология, психология и др.). Таким образом, расширяется круг школьников, для которых математика становится значимым предметом.

Для жизни в современном обществе важным является формирование математического стиля мышления, проявляющегося в определенных умственных навыках. В процессе математической деятельности в арсенал приемов и методов человеческого мышления естественным образом включаются индукция и дедукция, обобщение и конкретизация, анализ и синтез, классификация и систематизация, абстрагирование и аналогия. Объекты математических умозаключений и правила их конструирования вскрывают механизм логических построений, вырабатывают умения формулировать, обосновывать и доказывать суждения, тем самым развивают логическое мышление. Ведущая принадлежит математике формировании роль В алгоритмического мышления и воспитании умений действовать по заданному алгоритму и конструировать новые. В ходе решения задач — основной учебной деятельности на уроках математики — развиваются творческая и прикладная стороны мышления.

Обучение математике дает возможность развивать у учащихся точную, экономную и информативную речь, умение отбирать наиболее подходящие

языковые (в частности, символические, графические) средства.

Математическое образование вносит свой вклад в формирование общей культуры человека. Необходимым компонентом общей культуры в современном толковании является общее знакомство с методами познания действительности, представление о предмете и методе математики, его отличия от методов естественных и гуманитарных наук, об особенностях применения математики для решения научных и прикладных задач.

Изучение математики способствует эстетическому воспитанию человека, пониманию красоты и изящества математических рассуждений, восприятию геометрических форм, усвоению идеи симметрии.

История развития математического знания дает возможность пополнить запас историко-научных знаний школьников, сформировать у них представления о математике как части общечеловеческой культуры. Знакомство с основными историческими вехами возникновения и развития математической науки, с историей великих открытий, именами людей, творивших науку, должно войти в интеллектуальный багаж каждого культурного человека.

Личностные, метапредметные, предметные результаты изучения учебного предмета

Изучение математики в основной школе дает возможность обучающимся достичь следующих результатов развития:

В личностном направлении:

- умение ясно, точно, грамотно излагать свои мысли в устной и письменной речи, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контрпримеры;
- критичность мышления, умение распознавать логически некорректные высказывания, отличать гипотезу от факта;
- представление о математической науке как сфере человеческой деятельности, об этапах ее развития, о ее значимости для развития

цивилизации;

- креативность мышления, инициатива, находчивость, активность при решении математических задач;
- умение контролировать процесс и результат учебной математической деятельности;
- способность к эмоциональному восприятию математических объектов, задач, решений, рассуждений;

В метапредметном направлении:

- первоначальные представления об идеях и о методах математики как универсальном языке науки и техники, средстве моделирования явлений и процессов;
- умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни;
- умение находить в различных источниках информацию, необходимую для решения математических проблем, представлять ее в понятной форме, принимать решение в условиях неполной и избыточной, точной и вероятностной информации;
- умение понимать и использовать математические средства наглядности (графики, диаграммы, таблицы, схемы и др.) для иллюстрации, интерпретации, аргументации;
- умение выдвигать гипотезы при решении учебных задач, понимать необходимость их проверки;
- умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач;
- понимание сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом;
- умение самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем;
- умение планировать и осуществлять деятельность, направленную на

решение задач исследовательского характера;

В предметном направлении:

- овладение базовым понятийным аппаратом по основным разделам содержания, представление об основных изучаемых понятиях (число, геометрическая фигура, уравнение, функция, вероятность) как важнейших математических моделях, позволяющих описывать и изучать реальные процессы и явления;
- умение работать с математическим текстом (анализировать, извлекать необходимую информацию), грамотно применять математическую терминологию и символику, использовать различные языки математики;
- умение проводить классификации, логические обоснования, доказательства математических утверждений;
- умение распознавать виды математических утверждений (аксиомы, определения, теоремы и др.), прямые и обратные теоремы;
- развитие представлений о числе и числовых системах от натуральных до действительных чисел, овладение навыками устных, письменных, инструментальных вычислений;
- овладение символьным языком алгебры, приемами выполнения тождественных преобразований рациональных выражений, решения уравнений, систем уравнений, неравенств и систем неравенств, умение использовать идею координат на плоскости для интерпретации уравнений, неравенств, систем, умение применять алгебраические преобразования, аппарат уравнений и неравенств для решения задач из различных разделов курса;
- овладение системой функциональных понятий, функциональным языком и символикой, умение на основе функционально-графических представлений описывать и анализировать реальные зависимости;
- овладение основными способами представления и анализа статистиче-

- ских данных; наличие представлений о статистических закономерностях в реальном мире и о различных способах их изучения, о вероятностных моделях;
- овладение геометрическим языком, умение использовать его для описания предметов окружающего мира, развитие пространственных представлений и изобразительных умений, приобретение навыков геометрических построений;
- усвоение систематических знаний о плоских фигурах и их свойствах, а также на наглядном уровне о простейших пространственных телах, умение применять систематические знания о них для решения геометрических и практических задач;
- умения измерять длины отрезков, величины углов, использовать формулы для нахождения периметров, площадей и объемов геометрических фигур;
- умение применять изученные понятия, результаты, методы для решения задач практического характера и задач из смежных дисциплин с использованием при необходимости справочных материалов, калькулятора, компьютера.

СОДЕРЖАНИЕ УЧЕБНОГО КУРСА

Функции и их графики (21 час).

Числовая функция. Способы задания функции. Область определения и область значений функции. Функциональная символика. График функции. Графики элементарных функций. Преобразования графиков: параллельный перенос, растяжение и сжатие графика вдоль оси ОХ и ОУ. Г рафики функций, содержащих знак модуля.

Квадратичная функция и ее график. Зависимость свойств квадратичной функции от коэффициентов. Дробно-линейная функция и ее график.

Общие свойства функций: четные и нечетные функции, монотонность функции, точки максимума и минимума, наибольшее и наименьшее значение функции на промежутке. Чтение графиков. Промежутки знакопостоянства.

Уравнения и системы уравнений (42 часа).

Решение уравнений высших степеней приведением к квадратным, заменой переменных, разложением на множители. Уравнения, содержащие знак модуля.

Системы уравнений. Методы решения систем уравнений.

Решение задач на составление систем уравнений.

Уравнения с параметрами.

Неравенства и системы неравенств (13 часов).

Решение неравенств второй степени методом интервалов. Решение дробно-рациональных неравенств с одной переменной. Решение неравенств с переменной под знаком модуля.

Линейное неравенство с двумя переменными. Системы неравенств с одной и с двумя переменными.

Степени и корни (18 часов).

Взаимно обратная функция. Функция обратная степенной с натуральным показателем. Степени с целыми показателями. Степенная функция с натуральным показателем. Корни с натуральными показателями. Извлечение корней нечетной степени из отрицательных чисел. Свойства корней из неотрицательных чисел. Степени с рациональными показателями.

Иррациональные уравнения и неравенства. Методы решения простейших иррациональных уравнений и неравенств.

Числовые последовательности (21 час).

Числовые последовательности, способы их задания. Свойства

последовательностей.

Арифметическая прогрессия. Геометрическая прогрессия.

Понятие предела последовательности. Бесконечно убывающая геометрическая прогрессия.

Тригонометрические функции числового аргумента (13 часов).

Радианная мера угла. Синус, косинус, тангенс и котангенс числового аргумента. Свойства тригонометрических функций. Формулы приведения. Соотношения между тригонометрическими функциями одного и того же аргумента. Формулы двойного угла.

Элементы комбинаторики и теории вероятностей (15часов).

Основные понятия и формулы комбинаторики: перестановки, размещения и сочетания. Частота и вероятность.

Классическое определение вероятности. Правило сложения и умножения вероятностей.

Повторение (13 часов).

Контрольные мероприятия (10 часов)

ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ

І полугодие

Учеб.	-		
y 4e0.	Лекция	Алгебра (семинары)	
нед.	1 час в неделю(алгебра и геометрия)	4 часа в неделю	
1	Г еометрия	Диагностическая контрольная работа. Повторение: формулы сокращенного умножения. Модуль числа. Преобразование выражений, содержащих переменную под знаком	
		модуля.	
	Область определения и множество значений функции. Квадратичная	Повторение: тождественные преобразования целых выражений.	
2	значении функции. квадратичная функция и её график.	Квадратный трехчлен. Разложение квадратного трехчлена на линейные множители.	
		Квадратичная функция. График квадратичной функции.	
3	Г еометрия	Повторение: тождественные преобразования целых выражений. Дробно-линейная	
3		функция. Свойства функции и	
		её график. Преобразование графиков $y = f(x), y = f(x) ,$	
4	Преобразование графиков <i>y=f(x±a)</i> ,	y = f(x)	
4	Преобразование графиков $y=f(x=a)$, $y=f(x)+a$ $y=f(kx)$, $y=kf^{(x)}$.	— Контрольная работа №1.	
5	Г еометрия	Уравнения высших степеней. Методы решения уравнений.	
6	Уравнения высших степеней. Методы решения уравнений.	Дробно-рациональные уравнения.	
7	Неравенства с одной переменной. Свойства неравенств. Квадратичные неравенства.	Уравнения, содержащие переменную под знаком модуля.	
8	Г еометрия	Контрольная работа №2.	
		Квадратичные неравенства.	
		Метод интервалов.	
9	Метод интервалов.	Решение целых неравенств с одной переменной.	

10	Системы и совокупности неравенств. Неравенства, содержащие переменную под знаком модуля.	Метод интервалов. Решение дробно-рациональных неравенств с одной переменной Системы и совокупности неравенств. Неравенства, содержащие переменную под знаком модуля. Контрольная работа №3.	
11	Г еометрия	Уравнение с двумя переменными. График уравнения с двумя переменными. Системы уравнений с двумя переменными.	
12	Уравнение с двумя переменными. График уравнения с двумя переменными. Системы уравнений с двумя переменными.	Системы уравнений с двумя переменными. Методы решения систем уравнений.	
13	Г еометрия	Решение текстовых задач. Задачи на движение и работу.	
14			
15	Свойства функций. Область определения и множество значений функции. Четные и нечетные функции. Монотонность. Степенная функция с натуральным показателем.	Решение текстовых задач. Контрольная работа №4.	
16	Арифметический корень <i>n-ой</i> степени. Функция обратная степенной с натуральным показателем. Степень с рациональным показателем.	Свойства функций. Степенная функция с натуральным показателем. Функция обратная степенной с натуральным показателем.	

II полугодие

Учеб.	Лекция	Алгебра (семинары)	
нед.	1 час в неделю	4 часа в неделю	
1	Г еометрия	Степень с рациональным показателем. Преобразование выражений, содержащих степень с рациональным показателем.	
2	Простейшие иррациональные уравнения и неравенства.	Преобразование выражений, содержащих степень с рациональным показателем.	
3	Г еометрия	Решение простейших иррациональных уравнений и неравенств.	
4	Арифметическая прогрессия. Формула <i>n-ого</i> члена. Сумма первых <i>n</i> членов арифметической прогрессии.	Контрольная работа №5 Числовые последовательности и способы их задания. Свойства последовательностей. Возрастающие и убывающие последовательности. Ограниченные и неограниченные последовательности. Решение задач.	
5	Геометрическая прогрессия. Формула п-ого члена. Сумма первых <i>п</i> членов геометрической прогрессии.	Арифметическая прогрессия. Формула <i>n</i> -ого члена. Сумма первых <i>n</i> членов арифметической прогрессии.	
6	Предел последовательности. Сумма бесконечно убывающей геометрической прогрессии.	Геометрическая прогрессия. Формула п-ого члена. Сумма первых <i>п</i> членов геометрической прогрессии.	
7	Г еометрия	Сумма бесконечно убывающей геометрической прогрессии.	
8	Решение задач с параметром.	Решение задач. Контрольная работа №6	
9	Решение задач с параметром.	Решение задач с параметром.	
10	Комбинаторика. Правила сложения и умножения. Сочетания и размещения без повторений. Классическое определение вероятности.	Решение задач с параметром.	
11	Г еометрия	Элементы комбинаторики. Правила сложения и умножения. Сочетания и размещения без повторений.	

ра угла.	Элементы теории вероятностей. Правила сложения и умножения. Решение задач.
ический круг.	
тригонометрических	
10вого аргумента.	
ические формулы для	Элементы теории вероятностей. Решение задач.
ого аргумента. Формулы	
	Контрольная работа №7.
ия. Формулы сложения.	Радианная мера угла. Тригонометрический круг. Определение тригонометрических
йных углов.	функций числового аргумента.
кие преобразования.	
ды движения.	Тригонометрические формулы для функций одного аргумента. Формулы приведения.
	Тригонометрические формулы сложения. Формулы двойных углов.
	Самостоятельная работа.
урса алгебры 7-9 классов.	Повторение курса алгебры 7-9 классов.
экзамену.	Подготовка к экзамену.
	Повторение курса алгебры 7-9 классов.
	Подготовка к экзамену.

Основная учебная и учебно-методическая литература

1. Алгебра. 9 класс: учеб. Для общеобразоват. Организаций/ [Ю.Н. Магарычев, Н.Г.

Миндюк, К.И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского.- М.: Просвещение, 2014 - 288 с.: ил. ФП учебников на 15-16 г № 1.2.3.2.5.3.

Дополнительная учебная и учебно-методическая литература

- 1. Макарычев Ю.Н., Миндюк Н.Г., Нешков К.И., Феоктистов И.Е. Алгебра.9 класс: учеб. для общеобразоват. учреждений-М.:Мнемозина, 2005-2014
- 2. Галицкий М.Л., Гольдман А.М., Звавич Л.И. Сборник задач по алгебре для 8-9 классов. М.: Просвещение, 2003-2013.
- 2. Звавич Л.И., Шляпочник Л.Я. Алгебра и начала анализа. 8-11 кл.: Дидактические материалы для шк. и классов с углубленным изучением математики.- М.: Дрофа, 1999.
- 3. Зив Б.Г., Гольдич В.А. Дидактические материалы по алгебре для 9 класса.- СПб., 2003.

4. Макарыч **В СР. Т. М. Т. Просвещение**, 1998.

«Математика в школе», приложение к газете «Первое сентября».

Пояснительная записка.

Рабочая программа по геометрии для 9 класса составлена на основе Федерального государственного образовательного стандарта (ФГОС) и Требований к результатам основного общего образования, представленных в ФГОС.

В Программе предусмотрены развитие всех обозначенных в ФГОС основных видов деятельности учеников и выполнение целей и задач, поставленных ФГОС.

Программа разработана на основе следующих нормативных документов и методических материалов:

- Федеральный государственный образовательный стандарт основного общего образования, утвержденный приказом Министерства образования и науки Российской Федерации от «17» декабря 2010 г. № 1897;
- Федеральный закон об образовании в Российской Федерации № 273-ФЗ от 29.12.2012;
- Федеральный перечень учебников, утверждён приказом Министерства образования и науки Российской Федерации от 31 марта 2014 г. № 253 «Об федерального перечня учебников, утверждении рекомендованных использованию при реализации имеющих аккредитацию образовательных общего, общего, среднего общего программ начального основного образования» с изменениями от 08.06.2015 г.;

Вклад учебного предмета в общее образование

Геометрия — один из важнейших компонентов математического образования, она необходима для приобретения конкретных знаний о пространстве и практически значимых умений, формирования языка описания

объектов окружающего мира, развития пространственного воображения и интуиции, математической культуры и эстетического воспитания учащихся. Изучение геометрии вносит вклад в развитие логического мышления и формирование понятия доказательства.

Особенности Рабочей программы по предмету

Представляемая программа не предназначена для специализированных математических школ, а предлагается для изучения в классах с повышенной математической подготовкой. В программе реализовано содержание программы для общеобразовательной школы, а отличие состоит в более глубоком изучении соответствующих вопросов курса.

В программе предусмотрено более глубокое (по сравнения с общеобразовательным курсом) изучение геометрии, достигаемое не за счет увеличения числа часов, отводимых на предмет, а за счет рассмотрения многовариантных задач.

Общие цели учебного предмета для уровня обучения

Изучение предмета направлено на достижение следующих целей:

- овладение системой знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования;
- интеллектуальное развитие, формирование свойственных математической деятельности качеств личности, необходимых человеку для полноценной жизни в современном обществе: ясности и точности мысли, критичности мышления, интуиции, логического мышления, элементов алгоритмической культуры, способности к преодолению трудностей;
- формирование представлений об идеях и методах геометрии как универсального языка науки и техники, средства моделирования явлений и процессов;
- воспитание культуры личности, отношения к предмету как к части общечеловеческой культуры, играющей особую роль в общественном развитии.

Сроки реализациности опеньи предметных результатов

Программа рассчитана на изучение геометрии 2 часа в неделю - 68 часов

ГОД.

Структура и специфика курса

Курс планиметрии рационально сочетает логическую строгость и геометрическую наглядность. Увеличивается теоретическая значимость изучаемого материала, расширяются внутренние логические связи курса, повышается роль дедукции, степень абстракции изучаемого материала. Учащиеся должны овладеть приемами аналитико-синтетической деятельности при доказательстве теорем и решении задач. Систематическое изучение курса позволит начать работу по формированию представлений учащихся о строении математической теории, обеспечит развитие логического мышления учащихся. Изложение материала характеризуется постоянным обращением наглядности, использованием рисунков и чертежей на всех этапах обучения и развитием геометрической интуиции на этой основе. Целенаправленное обращение к примерам из практики развивает умения учащихся вычленять геометрические факты, формы и отношения в предметах и явлениях действительности, использовать язык геометрии для их описания.

ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОСВОЕНИЯ УЧЕБНОГО ПРЕДМЕТА

Математическое образование играет важную роль, как в практической, так и в духовной жизни общества. Практическая сторона математического образования связана с формированием способов деятельности, духовная — с интеллектуальным развитием человека, формированием характера и общей культуры.

Практическая полезность математики обусловлена тем, что ее предметом являются фундаментальные структуры реального мира: пространственные формы и количественные отношения — от простейших, усваиваемых в

непосредственном опыте, до достаточно сложных, необходимых для развития научных и технологических идей. Без конкретных математических знаний затруднено понимание принципов устройства и использования современной интерпретация разнообразной техники, восприятие И социальной, экономической, политической информации, малоэффективна повседневная практическая деятельность. Каждому человеку в своей жизни приходится выполнять достаточно сложные расчеты, находить в справочниках нужные формулы и применять их, владеть практическими приемами геометрических измерений и построений, читать информацию, представленную в виду таблиц, диаграмм, графиков, понимать вероятностный характер случайных событий, составлять несложные алгоритмы и др.

Без базовой математической подготовки невозможно стать образованным современным человеком. В школе математика служит опорным предметом для В изучения смежных дисциплин. после школьной жизни реальной необходимостью в наши дни является непрерывное образование, что требует полноценной базовой общеобразовательной подготовки, в том числе и математической. И наконец, все больше специальностей, где необходим высокий уровень образования, связано с непосредственным применением математики (экономика, бизнес, финансы, физика, химия, информатика, биология, психология и др.). Таким образом, расширяется круг школьников, для которых математика становится значимым предметом.

Для жизни в современном обществе важным является формирование математического стиля мышления, проявляющегося В определенных умственных навыках. В процессе математической деятельности в арсенал метолов человеческого мышления естественным образом приемов включаются индукция и дедукция, обобщение и конкретизация, анализ и синтез, классификация и систематизация, абстрагирование и аналогия. Объекты математических умозаключений и правила их конструирования вскрывают механизм логических построений, вырабатывают умения формулировать, обосновывать и доказывать суждения, тем самым развивают логическое

мышление. Ведуная принадлераметиным резхатьтато формировании алгоритмического мышления и воспитании умений действовать по заданному алгоритму и конструировать новые. В ходе решения задач — основной учебной деятельности на уроках математики — развиваются творческая и прикладная гороны мышления.

Обучение математике дает возможность развивать у учащихся точную, экономную и информативную речь, умение отбирать наиболее подходящие языковые (в частности, символические, графические) средства.

Математическое образование вносит свой вклад в формирование общей культуры человека. Необходимым компонентом общей культуры в современном толковании является общее знакомство с методами познания действительности, представление о предмете и методе математики, его отличия от методов естественных и гуманитарных наук, об особенностях применения математики для решения научных и прикладных задач.

Изучение математики способствует эстетическому воспитанию человека, пониманию красоты и изящества математических рассуждений, восприятию геометрических форм, усвоению идеи симметрии.

История развития математического знания дает возможность пополнить запас историко-научных знаний школьников, сформировать У них представления о математике как части общечеловеческой Знакомство с основными историческими вехами возникновения и развития математической науки, с историей великих открытий, именами людей, творивших науку, должно войти в интеллектуальный багаж каждого культурного человека.

Личностные, метапредметные и предметные результаты освоения конкретного учебного предмета

Программа обеспечивает достижение следующих результатов освоения

образовательной программы основного общего образования: Личностные результаты освоения геометрии в 9 классе:

- сформированность ответственного отношения к учению, готовность и способности обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию, выбору дальнейшего образования на базе ориентировки в мире профессий и профессиональных предпочтений, осознанному построению индивидуальной образовательной траектории с учетом устойчивых познавательных интересов;
- сформированность целостного мировоззрения, соответствующего современному уровню развития науки и общественной практики;
- сформированность коммуникативной компетентности в общении и сотрудничестве со сверстниками, старшими и младшими, в образовательной, общественно полезной, учебно-исследовательской, творческой и других видах деятельности;
- умение ясно, точно, грамотно излагать свои мысли в устной и письменной речи, понимать смысл поставленной задачи, выстраивать аргументация, приводить примеры и контпримеры;
- представление о математической науке как сфере человеческой деятельности, об этапах её развития, о её значимости, для развития цивилизации;
- критичность мышления, умение распознать логически некорректные высказывания, отличать гипотезу от фактов;
- креативность мышления, инициатива, находчивость, активность при решении алгебраических задач;
- умение контролировать процесс и результат учебной математической деятельности;
- способность к эмоциональному восприятию математических объектов, задач, решений, рассуждений.

Метапредметные результаты освоения геометрии в 9 классе:

- умение самобличение постаниривальнать на познавательных задач;
- умение осуществлять контроль по результатам и по способу действий на уровне произвольного внимания и вносить необходимые коррективы;
- умение адекватно оценивать правильность и ли ошибочность выполнения учебной задачи, её объективную трудность и собственные возможности её решения;
- осознанное владение логическими действиями определения понятий, бобщения, установления аналогий, классификации на основе амостоятельного выбора оснований и критериев, установления родовидовых связей;
 - умение устанавливать причинно-следственные связи; строить логическое рассуждение, умозаключение (индуктивное, дедуктивное и по аналогии) и выводы;
 - умение создавать, применять и преобразовывать знаковосимволические средства, модели и схемы для решения учебных и познавательных задач;
 - умение организовывать учебное сотрудничество и совместную деятельность с учителем и сверстниками: определять цели, распределение функций и ролей участников, взаимодействие и общие способы работы; умение работать в группе: находить общие решения и разрешать конфликты на основе согласования позиций и учета интересов; слушать партнера; формулировать, аргументировать и отстаивать свое мнение;
 - сформированность учебной и общепользовательской компетентности в области использования информационно-коммуникационных технологий (ИКТ-компетентности);
 - первоначальные представления об идеях и о методах математики как

об универсальном языке науки и техники, о средстве моделирования явлений и процессов;

- умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни;
- умение находить в различных источниках информацию, необходимую для решения математических проблем, и представлять её в понятной форме;
- ринимать решения в условиях неполной и избыточной, точной и вероятностной информации;
 - умение понимать и использовать математические средства наглядности(рисунки, чертежи, схемы и др.) для иллюстрации, интерпретации, аргументации;
 - умение выдвигать гипотезы при решении учебных задач и понимать необходимость их проверки;
 - умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач;
 - понимание сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом;
 - умение самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем;
 - умение планировать и осуществлять деятельность, направленную на решение задач исследовательского характера.

Предметные результаты освоения геометрии в 9 классе:

Геометрические фигуры

- Оперировать понятиями геометрических фигур;
- извлекать, интерпретировать и преобразовывать информацию о геометрических фигурах, представленную на чертежах;
- применять геометрические факты для решения задач, в том числе, предполагающих несколько шагов решения;

- формулировань в простечении спредметных празильтатав и фигур;
- доказывать геометрические утверждения;
- владеть стандартной классификацией плоских фигур (треугольников и четырехугольников).

В повседневной жизни и при изучении других предметов:

использовать свойства геометрических фигур для решения задач

рактического характера и задач из смежных дисциплин.

Отношения

- Оперировать понятиями: равенство фигур, равные фигуры, равенство треугольников, параллельность прямых, перпендикулярность прямых, углы между прямыми, перпендикуляр, наклонная, проекция, подобие фигур, подобные фигуры, подобные треугольники;
- применять теорему Фалеса и теорему о пропорциональных отрезках при решении задач;
- характеризовать взаимное расположение прямой и окружности, двух окружностей.

В повседневной жизни и при изучении других предметов:

• использовать отношения для решения задач, возникающих в реальной жизни.

Измерения и вычисления

- Оперировать представлениями о длине, площади, объеме как величинами. Применять теорему Пифагора, формулы площади, объема при решении многошаговых задач, в которых не все данные представлены явно, а требуют вычислений, оперировать более широким количеством формул длины, площади, объема, вычислять характеристики комбинаций фигур (окружностей и многоугольников) вычислять расстояния между фигурами, применять тригонометрические формулы для вычислений в более сложных случаях, проводить вычисления на основе равновеликости и равносоставленности;
 - проводить простые вычисления на объемных телах;
- формулировать задачи на вычисление длин, площадей и объемов и решать их.

В повседневной жизни и при изучении других предметов:

- проводить вычисления на местности;
- применять формулы при вычислениях в смежных учебных предметах,

Геометрические построения

в окружающей действительности.

- Изображать геометрические фигуры по текстовому и символьному описанию;
- свободно оперировать чертежными инструментами в несложных случаях,
- выполнять построения треугольников, применять отдельные методы построений циркулем и линейкой и проводить простейшие исследования числа решений;
- изображать типовые плоские фигуры и объемные тела с помощью простейших компьютерных инструментов.

В повседневной жизни и при изучении других предметов:

- выполнять простейшие построения на местности, необходимые в реальной жизни;
 - оценивать размеры реальных объектов окружающего мира.

Преобразования

- Оперировать понятием движения и преобразования подобия, владеть приемами построения фигур с использованием движений и преобразований подобия, применять полученные знания и опыт построений в смежных предметах и в реальных ситуациях окружающего мира;
- строить фигуру, подобную данной, пользоваться свойствами подобия для обоснования свойств фигур;
- применять свойства движений для проведения простейших обоснований свойств фигур.

В повседневной жизни и при изучении других предметов:

• применять свойства движений и применять подобие для построений и вычислений.

Векторы и координаты на плоскости

• Оперировать понятиями вектор, сумма, разность векторов, произведение вектора на число, угол между векторами, скалярное произведение

векторов, координаты на плоскости, координаты вектора;

- выполнять действия над векторами (сложение, вычитание, умножение на число), вычислять скалярное произведение, определять в простейших векторами, случаях УГОЛ между ВЫПОЛНЯТЬ разложение вектора применять полученные физике, составляющие, знания пользоваться формулой вычисления расстояния между точками по известным координатам, использовать уравнения фигур для решения задач;
- применять векторы и координаты для решения геометрических задач на вычисление длин, углов.

В повседневной жизни и при изучении других предметов:

• использовать понятия векторов и координат для решения задач по физике, географии и другим учебным предметам.

История математики

- Характеризовать вклад выдающихся математиков в развитие математики и иных научных областей;
 - понимать роль математики в развитии России.

Методы математики

- Используя изученные методы, проводить доказательство, выполнять опровержение;
- выбирать изученные методы и их комбинации для решения математических задач;
- использовать математические знания для описания закономерностей в окружающей действительности и произведениях искусства;
- применять простейшие программные средства и электронно-коммуникационные системы при решении математических задач.

СОДЕРЖАНИЕ УЧЕБНОГО ПРЕДМЕТА

Векторы и координаты (20 часов).

Векторные величины. Длина и направление вектора. Сложение векторов, его свойства. Вычитание векторов, разложение вектора на его составляющие.

Умножение вектора на число, его свойства. Проекция вектора на ось, ее вычисление.

Координаты вектора: разложение вектора по осям координат, длина вектора в координатах, свойства координат векторов, доказательство свойств линейных операций с векторами посредством координат, вычисление расстояния между двумя точками.

Скалярное умножение и его свойства.

Векторный метод: применение линейных операций с векторами и скалярного умножения к решению задач, радиус-вектор, векторное задание прямой и отрезка, центр масс.

Метод координат: уравнение фигуры, уравнение окружности и прямой, задание фигуры уравнениями и неравенствами, применение метода координат к решению задач, теоремы синусов и косинусов.

Многоугольники и окружности (25 часов).

Вписанные и описанные окружности (окружности вписанная и описанная по отношению к треугольнику; окружности вписанная и описанная по отношению к многоугольнику).

Правильные многоугольники. Построение правильных многоугольников.

Понятие длины кривой. Длина окружности и длина дуги окружности.

Понятие площади фигуры. Площадь круга и площадь частей круга.

Преобразования (6 часов).

Движения и равенство фигур.

Виды движений: параллельный перенос, осевая симметрия, поворот, центральная симметрия. Методы решения задач, основанные на движении.

Гомотетия и ее свойства. Применение гомотетии для решения задач.

Подобие и его свойства. Признаки подобия треугольников. Метод подобия в решении задач.

Основания планиметрии и повторение (24 часа).

Аксиоматический метод. Основные понятия и определения. Аксиоматика евклидовой планиметрии. История развития геометрии. Планиметрия

Лобачевского.

Геометрия треугольника.

Окружность.

3. ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ

	ол-во асов	Тема занятий	
	2	ствия над векторами.	
	2	векторами. Разложение вектора по двум	
	2	неколлинеарным векторам.	
	2	векторами.	
	2	оизведение векторов.	
	2	ч.	
	2	вектора. Действия над векторами в	
		координатной форме.	
	2	кружности и прямой.	
	2	кружности и прямой.	
		Контрольная работа №1.	
	2	сов и теорема косинусов.	
	2	сов и теорема косинусов. Решение	
	_	треугольников.	
10	2	/гольников.	
		Контрольная работа №2.	
	2	площадей треугольников и многоугольников.	
12	2	площадей треугольников и многоугольников.	
		площадей треугольников и многоугольников.	
	2	Соотношения	
		сугольников с общими элементами.	
	2	я площадей треугольников с общими	
14		элементами.	
		я работа №3	
15	2	обия. Подобие треугольников. Признаки	
		подобия треугольников	
16	2	угольников. Признаки подобия треугольников.	
Отношение площадей подобных (* **	
17	2	я в прямоугольном треугольнике.	
18	2	я в прямоугольном	
		. Свойство биссектрисы треугольника.	
19	2	Ч.	
	12	Контрольная работа № 4.	
	2	Углы в окружности.	
	2	Касательная к окружности.	

2	Пропорциональность д и секущих. Теорема о квадрате отрезка
2	я работа №5
	Вписанная и описанная окружности.
2	Вписанная и описанная окружности.
2	и четырехугольники.
2	исания и описания окружностей.
2	и треугольники.
2	Окружности и четырехугольники.
2	ч.
2	Контрольная работа №6
2	многоугольники.
2	ности. Площадь круга и его частей.
2	елая.
2	
2	иды движения.
	Применение для решения задач.
2	иотетия. Применение для решения задач
2	бинированных задач.

Основная учебная и учебно-методическая литература

Геометрия, 7-9: учеб. Для общеобразоват. Учреждений/ [Л.С. Атанасян, В.Ф. Бутузов, С.Б. Кадомцев и др. .]- 18-е. изд.- М.Просвещение, 2008.- 384 с.: ил.- (ФП учебников на 2015-2016 уч.г. № 1.2.3.3.2.1)

Дополнительная учебная и учебно-методическая литература

Киселев А.П., Рыбкин Н.А. Геометрия: планиметрия, 7-9 кл. Учебник и задачник. - М.: Дрофа, 1998

«Математика в школе», приложение к газете «Первое сентября».

Зив Б.Г. Задачи к урокам геометрии. 7-11 классы.- С.-Петербург, 1998.

Окунев А.А. Углубленное изучение геометрии в 9 классе: Пособие для учителя.- М.: Просвещение, 1996.

Галицкий М.Л. и др. Курс геометрии 8 класса в задачах/ журнал «Квантор» №7.

Рыжик В.И., Окунев А.А. Дидактические материалы по геометрии для 9 класса,

бно-методические и дидактические материалы	tudy/materials/2/
кие этюды	
центр непрерывного математического	
образования	
кие задачи	
ндра Ларина	
метрия	
ндра Емелина	
ие профессиональных математических	
приложений	
ідя всех	uru. ru
кие олимпиады и олимпиадные задачи	
приложение к учебнику. Л.С. Атанасян, В.Ф.	
Бутузова, С.Б. Кадомцева и др. Издательство Просвещение	