Министерство науки и высшего образования Российской Федерации

Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский ядерный университет «МИФИ»

Университетский лицей № 1511 предуниверситария НИЯУ МИФИ

«УТВЕРЖДЕНО»

Руководитель лицея №1511

М. В. Мазурина

«27» августа 2020 г

РАБОЧАЯ ПРОГРАММА ПРОГРАММИРОВАНИЕ 10-11 КЛАСС

Разработчики:

Заведующий методическим объединением учителей информатики лицея

Козлов Д.А.

«27» августа 2020 г

Пояснительная записка

Программа по курсу программирование для 10-11 класса составлена в соответствии с требованиями Федерального государственного образовательного стандарта среднего (полного) общего образования (Приказ МинОбрНауки от 17.12.2010г. №1897 ФГОС ООО); требованиями к результатам освоения средней (полной) образовательной программы (личностным, метапредметным, предметным); основными подходами к развитию и формированию универсальных учебных действий (УУД) для среднего (полного) общего образования.

Данный курс направлен на получение обучающимися знаний по программированию и моделированию с использованием языка высокого уровня C++И пакета прикладных программ ROOT, изучение алгоритмических конструкций, развитие интеллекта И творческих способностей учащихся.

Выбор для обучения языка высокого уровня C++ обусловлен рядом преимуществ: средства для работы с C++ относятся к категории свободно распространяемого программного обеспечения (СПО), обширная область применения, кроссплатформенность. Наличие библиотек для изучения технологий параллельного программирования, позволяет использовать язык C++ для работы на суперкомпьютере.

Выбор пакета прикладных программ ROOT обусловлен следующим написания программ на C++рядом причин: поддержка языке дополнительные возможности В режиме интерпретатора, мультиплатформенность, большое количество графических библиотек, управление анимацией, двухстороння интеграция с Python, поддержка технологий параллельного программирования OPEN_MP.

Программа курса предусматривает опережающее изучение языка C++ по сравнению с основным курсом информатики, что поможет учащимся в

дальнейшем в подготовке к проектной и исследовательской деятельности и в обучении работе на суперкомпьютере.

Цели и задачи курса

Изучение технологий программирования и параллельных вычислений в основной школе направлено на достижение следующих целей:

- 1. формирование основ научного мировоззрения в процессе систематизации, теоретического осмысления и обобщения имеющихся и получения новых знаний,
- 2. умений и способов деятельности в области информатики и информационных и коммуникационных технологий (ИКТ);
- 3. совершенствование общеучебных и общекультурных навыков работы с информацией, навыков информационного моделирования, исследовательской деятельности и т.д.; развитие навыков самостоятельной учебной деятельности школьников;

Задачи:

- 1. овладение умениями работать с различными видами информации с помощью компьютера и других средств информационных и коммуникационных технологий (ИКТ), организовывать собственную информационную деятельность и планировать ее результаты;
- 2. развитие познавательных интересов, интеллектуальных и творческих способностей средствами ИКТ;
- 3. выработка навыков применения средств ИКТ в повседневной жизни, при выполнении индивидуальных и коллективных проектов, в учебной деятельности, дальнейшем освоении профессий, востребованных на рынке труда.

Планируемые результаты освоения учебного предмета

Общая характеристика изучаемого предмета

Программа по предмету «Программирование» предназначена для углубленного изучения разделов курса информатики, связанных с алгоритмизацией и решением вычислительных задач, учащимися информационно-технологического и физико-математического профилей. Она включает в себя три крупные содержательные линии:

Алгоритмы и программирование

Параллельные вычисления

Моделирование

Важная задача изучения этих содержательных линий в углубленном курсе – переход на новый уровень понимания и получение систематических знаний, необходимых для самостоятельного решения задач, в том числе и тех, которые в самом курсе не рассматривались. Существенное внимание уделяется линии «Алгоритмизация и программирование», которая входит в перечень предметных результатов ФГОС. Для изучения программирования используются язык С++. Отличительной особенностью курса является рассмотрение темы алгоритмизации и программирование через решение задач из области физики и математики с использованием суперкомпьютера. Таким образом, учащиеся используют современные технологии для решения исследовательских и научных задач, что создает дополнительную мотивацию дальнейшего выбора профессиональной и учебной деятельности в сфере физики высоких технологий.

Место изучаемого предмета в учебном плане

Для полного освоения программы предмета «**Программирование**» отводится по 2 часа в неделю в 10 и 11 классах (всего 68 часов в 10 классе и 68 часов в 11 классе).

Количество учебных часов в учебном плане скорректировано в связи со спецификой образовательной программы предуниверситария НИЯУ МИФИ.

Описание ценностных ориентиров содержания учебного предмета

Содержание курса направлено на формирование личностных, метапредметных и предметных результатов обучения. Системный характер содержания курса определяется фундаментальным ядром, зафиксированы современные представления 0 дисциплине «Программирование», рассмотренные под углом зрения целей и задач научного и исследовательского сообщества.

Личностные, метапредметные и предметные образовательные результаты обучения строятся на основе личностных, регулятивных, познавательных, знаково-символических и коммуникативных универсальных учебных действий.

Личностные результаты направлены на формирование в рамках курса программирования прежде всего личностных универсальных учебных действий, связанных в основном с морально-этической.

Метапредметные результаты нацелены преимущественно на развитие регулятивных и знаково-символических универсальных учебных действий через освоение фундаментальных для информатики понятий алгоритма и информационной (знаково-символической) модели.

Предметные результаты в сфере познавательной деятельности отражают внутреннюю логику развития учебного предмета: от информационных процессов через инструмент их познания — моделирование — к алгоритмам.

В этой последовательности формируется, в частности, сложное логическое действие — общий приём решения задачи.

Образовательные результаты в сфере ценностно-ориентированной деятельности отражают особенности деятельности учащихся в современной информационной цивилизации.

Образовательные результаты в коммуникативной сфере направлены на реализацию коммуникативных универсальных учебных действий.

Предметные образовательные результаты в сфере трудовой деятельности направлены на самоопределение учащихся в окружающей их информационной среде, на освоение средств ИКТ.

Предметные образовательные результаты в сфере эстетической деятельности подчёркивают тот факт, что с помощью средств информационных технологий учащиеся могут создавать эстетически-значимые объекты.

Наконец, предметные образовательные результаты в сфере охраны здоровья акцентируют внимание на особенностях непосредственной работы учащегося с компьютером.

Личностные, метапредметные и предметные результаты освоения предмета

Личностные результаты

- 1) сформированность мировоззрения, соответствующего современному уровню развития науки и техники;
- готовность и способность к образованию, в том числе самообразованию, на протяжении всей жизни; сознательное отношение к непрерывному образованию как условию успешной профессиональной и общественной деятельности;
- 3) навыки сотрудничества со сверстниками, взрослыми в образовательной, учебно-исследовательской, проектной и других видах деятельности;

- 4) эстетическое отношение к миру, включая эстетику научного и технического творчества;
- 5) осознанный выбор будущей профессии и возможностей реализации собственных жизненных планов; отношение к профессиональной деятельности как возможности участия в решении личных, общественных, государственных, общенациональных проблем.

Метапредметные результаты

- 1) умение самостоятельно определять цели деятельности и составлять планы деятельности; самостоятельно осуществлять, контролировать и корректировать деятельность; использовать все возможные ресурсы для достижения поставленных целей и реализации планов деятельности; выбирать успешные стратегии в различных ситуациях;
- 2) умение продуктивно общаться и взаимодействовать в процессе совместной деятельности, учитывать позиции других участников деятельности, эффективно разрешать конфликты;
- 3) владение навыками познавательной, учебно-исследовательской и проектной деятельности, навыками разрешения проблем; способность и готовность к самостоятельному поиску методов решения практических задач, применению различных методов познания;
- 4) готовность способность самостоятельной информационно-И К познавательной деятельности, включая умение ориентироваться информации, различных источниках критически оценивать И интерпретировать информацию, получаемую из различных источников;
- 5) умение использовать средства информационных и коммуникационных технологий в решении когнитивных, коммуникативных и организационных задач с соблюдением требований эргономики, техники безопасности, гигиены, ресурсосбережения, правовых и этических норм, норм информационной безопасности.

Предметные результаты

- 1) сформированность представлений о роли информации и связанных с ней процессов в окружающем мире;
- 2) владение системой базовых знаний, отражающих вклад информатики в формирование современной научной картины мира;
- 3) сформированность базовых навыков и умений по соблюдению требований техники безопасности, гигиены и ресурсосбережения при работе со средствами информатизации;
- 4) сформированность представлений об устройстве современных компьютеров, о тенденциях развития компьютерных технологий; о понятии «операционная система» и основных функциях операционных систем;
- 5) владение опытом построения И использования компьютерноматематических моделей, проведения экспериментов и статистической обработки данных помощью компьютера И суперкомьютера, интерпретации результатов, получаемых в ходе моделирования реальных процессов; умение оценивать числовые параметры моделируемых объектов И процессов; сформированность представлений необходимости анализа соответствия модели и моделируемого объекта (процесса);
- б) владение навыками алгоритмического мышления и понимание необходимости формального описания алгоритмов; владение начальными навыками параллельного программирования на суперкомпьютере
- 7) овладение понятием сложности алгоритма, знание основных алгоритмов обработки числовой и текстовой информации, алгоритмов поиска и сортировки;
- 8) владение стандартными приёмами написания на алгоритмическом языке программы для решения стандартной задачи с использованием основных конструкций программирования и отладки таких программ;

- использование готовых прикладных компьютерных программ по выбранной специализации;
- 9) владение универсальным языком программирования высокого уровня (по выбору), представлениями о базовых типах данных и структурах данных; умением использовать основные управляющие конструкции;
- 10) владение умением понимать программы, написанные на выбранном для изучения универсальном алгоритмическом языке высокого уровня; знанием основных конструкций программирования; умением анализировать алгоритмы с использованием таблиц;
- 11) владение навыками и опытом разработки программ в выбранной среде программирования, включая тестирование и отладку программ; владение элементарными навыками формализации прикладной задачи и документирования программ.

Содержание учебного предмета

В содержании предмета «Программирование» может быть выделено три крупных раздела общим объемом 136 часов:

Алгоритмы и программирование

Параллельные вычисления

Моделирование

В планировании учитывается дальнейшее обучение учащихся университетского лицея №1511 по программам кафедр НИЯУ МИФИ.

Основное содержание (136часов)

Алгоритмы и программирование(60)

Алгоритмизация и программирование. Типы данных. Циклические конструкции. Структуры данных.

Решение вычислительных задач. Точность вычислений. Решение уравнений. Дискретизация. Оптимизация. Статистические расчеты. Обработка результатов экспериментов

Объектно-ориентированное программирование. Инкапсуляция. Наследование. Полиморфизм

Параллельные вычисления (30)

Организация вычислений на многопроцессорных комплексах. Приближенное вычисление площади. Приближенное вычисление π. ОрепМР программы. Метод Монте-Карло.. Параллельное моделирование.

Моделирование (46 часов)

Моделирование простейших архитектурных комплексов. Разработка программ построения 3-d моделей простейших архитектурных комплексов. Описание 3-d объектов на суперкомпьютере. Процедура построения поверхности эллипсоида. ОрепМР процедуры. Оформление файлов для визуализации. Визуализация результатов. Компьютерные модели изображений в тонких линзах. Основы геометрической оптики. Построение изображения треугольника. Построение изображения сферы

Тематическое планирование к курсу информатики

№	Тема урока	Часов			
1.	Инструкция по Технике безопасности. Операционная система. Управление файлами. Работа с суперкомпьютером	2			
2.	Алгоритмы. Язык программирования. Структура программы. Вводвывод данных. Оператор присваивания. Типы данных. Переменные. Решение задач				
3.	Арифметические операции. Стандартные функции. Случайные числа. Логические переменные, логические операции, логические выражения. Решение задач				
4.	Самостоятельная работа по теме арифметические выражения.	2			

5.	Условный оператор. Вложенный условный оператор Сложные условия. Оператор множественного выбора. Решение задач.	2
٥.	Циклические алгоритмы. Цикл с условием. Циклы со счетчиком.	
6.	Решение задач	2
7.	Вложенные циклы. Решение задач по теме циклы	2
8.	Алгоритм Евклида. Модифицированный алгоритм Евклида. Анализ программ с циклами. Исправление ошибок.	2
9.	Решение задач. Самостоятельная работа по теме циклы	2
10.	Задачи на обработки последовательностей. Вычисление сумм и произведений. Анализ и обработка чисел	2
11.	Процедуры. Изменяемые параметры.	2
12.	Функции. Логические функции.	2
13.		$\frac{2}{2}$
	Решение задач по теме процедуры и функции	2
14.	Рекурсия. Алгоритм работы. Примеры задач на рекурсии	$\frac{2}{2}$
15.	Массивы. Перебор элементов. Решение задач.	2
16.	Алгоритмы обработки задач. Поиск в массиве. Максимальный элемент. Реверс массива.	2
17.	Контрольная работа Циклы и Массивы	2
18.	Матрицы. Сортировка	2
19.	Двоичный поиск. Решение задач.	2
20.	Самостоятельная работа по теме массивы. Символы. Символьные строки. Операции со строками.	2
21.	Преобразование строка-число. Решение задач	2
22.	Обработка строк. Рекурсия и строки	2
23.	Самостоятельная работа по теме строки. Файлы. Текстовые файлы.	2
25.	Примеры	
24.	Программный пакет ROOT. Основные характеристики ROOT. Использование ROOT в режиме калькулятора. Описание последовательности действий в форме макроса.	2
25.	Реализация алгоритмических конструкций и структур данных при работе в ROOT. Основные понятия объектно ориентированного программирования (ООП). Класс, метод, свойство.	2
26.	Технологии обработки графической информации. Простейшие графические объекты ROOT. Решение задач в среде ROOT.	2
27.	Компьютерная анимация. Анимация в пакете ROOT. Примеры анимации в пакете ROOT. Решение задач в среде ROOT.	2
28.	Самостоятельная работа по теме обработка графической информации	2
29.	3-d графика при программировании в пакете ROOT. Основные геометрические и математические объекты.параллелепипед, куб, призма, пирамида, цилиндр, конус	2
30.	Примеры программ. Решение задач в среде ROOT. Разработка программ построения 3-d геометрических объектов в пакете ROOT	2
31.	Основные математические объекты: эллипсоид, параболоид, гиперболоид, тор. Разработка программ построения 3-d математических объектов в пакете ROOT	2
32.	Комбинирование различных 3-d объектов в пакете ROOT. Примеры моделирования простейших архитектурных комплексов	2
33.	Контрольная работа по моделированию в пакете ROOT	2
34.	Моделирование на суперкомпьютере. Итоговое занятие. Повторение пройденного.	2

35.	Используемые информационные ресурсы. Правила и методы доступа к используемым информационным ресурсам. Представление числовой информации в памяти компьютера. Перевод, сложение и умножение в разных системах счисления	2					
36.	Кодирование и декодирование числовой информации. Условие Фано. Решение задач.	2					
37.	Кодирование текстовой информации. Кодировка ASCII. Основные кодировки кириллицы. Кодирование и декодирование информации. Разработка программ кодирования - декодирования числовой информации, заданной символьной строкой.	2					
38.	Технологии обработки графической информации. Кодирование графической информации. Разработка программ построения изображений из простейших графических объектов ROOT						
39.	Разработка компьютерныханимаций в пакете ROOT	2					
40.	Разработка программ построения 3-d геометрических объектов в пакете ROOT	2					
41.	3-d графика при программировании в пакете ROOT. Основные математические объекты: эллипсоид, параболоид, гиперболоид, тор.	2					
42.	Моделирование простейших архитектурных комплексов. Разработка программ построения 3-d моделей простейших архитектурных комплексов в пакете ROOT	2					
43.	Работа с файловой системой на суперкомпьютере.	2					
44.	Консольные приложения в среде суперкомпьютера. Предварительная разработка консольного приложения на персональном компьютере (Unix/WINDOWS). Консольное приложение для суперкомпьютера. Предупреждение об ошибках. Основной список ключей компилятора g++	2					
45.	Первый шаг к параллельному программированию. Аппаратное обеспечение Lambda. Организация вычислений на многопроцессорных комплексах.	2					
46.	Простейшая параллельная программа. Параллельное выполнение различных действий.	2					
47.	Первые параллельные вычисления. Приближенное вычисление площади. Приближенное вычисление π . Консольное приложение для вычисления π . Распараллеливание вычисления π . ОрепМР программа вычисления π .	2					
48.	Определение порога повышения производительности. Метод Монте- Карло. Консольное приложение для метода Монте-Карло. ОрепМР программа для метода Монте-Карло.	2					
49.	Передача сообщений между потоками параллельной программы. Прием – передача сообщений. Передача сообщений «по цепочке». Суммирование элементов одномерного массива.	2					
50.	Простейшее моделирование в среде суперкомпьютера. Моделирование на суперкомпьютере (один поток). Постановка задачи. Качественная описательная (вербальная) модель	2					
51.	Разработка OpenMP приложения для расчета и анализа зависимости длительности полета в поле силы тяжести от начальной скорости и угла наклона.	2					

52.	Формализация. Компьютерная модель как консольное приложение. Параллельное моделирование. Визуализация результатов расчетов в одной из электронных таблиц.	2			
53.	Инструменты визуализации данных. Алгоритм визуализации вычислений на суперкомпьютере. Инструмент визуализации в среде ROOT.	2			
54.	Примеры решения ранее рассмотренных задач. Построение 3-d моделей объектов. Модель плоскости. Модель пирамиды.				
55.	Построение модели куба. Построение модели кубической пирамиды				
56.	Программирование описания поверхности 3d объектов. Построение поверхности эллипсоида. Математическая модель эллипсоида.	2			
57.	Описание 3-d объектов на суперкомпьютере. Постановка задачи. Подготовка к разработке OpenMP программы. ОреnMP программа построения решетки.	2			
58.	Проектирование поверхности 3d модели эллипсоида. Алгоритм построения поверхности 3d модели эллипсоида. Построение 3d модели эллипсоида.	2			
59.	Процедура построения поверхности эллипсоида. ОрепМР процедуры. Оформление файлов для визуализации. Визуализация результатов.	2			
60.	Компьютерные модели изображений в тонких линзах. Основы геометрической оптики. Построение изображения треугольника. Построение изображения сферы	2			
61.	Разработка программы, которая моделирует построение изображения тетраэдра (треугольной пирамиды с равными ребрами), полученного тонкой линзой	2			
62.	Самостоятельная работа по теме моделирование	2			
63.	3d анимация	2			
64.	3d модель движения тела брошенного под углом к горизонту	2			
65.	3d модель движения спутника по орбите	2			
66.	3d модели движения электрона в электрическом и магнитном полях	2			
67.	Повторение пройденного. Алгоритмизаци и программирование	2			
68.	Повторение пройденного. Итоговое занятие	2			

Описание учебно-методического и материально-технического обеспечения образовательного процесса

В состав УМК входят:

Основная учебная и учебно-методическая литература

Поляков К.Ю., Еремин Е.А., Учебник «Информатика» 10-11 классы (ФГОС, углублённый уровень) БИНОМ. Лаборатория знаний (ФП 2015-2016. 1.3.4.4.2.1 и 1.3.4.4.2.2)

Дополнительная учебная и учебно-методическая литература

- http://fipi.ru
- http://www.metodist.ru Лаборатория информатики МИОО
- http://www.it-n.ru Сеть творческих учителей информатики
- http://www.metod-kopilka.ru Методическая копилка учителя информатики
- http://fcior.edu.ruhttp://eor.edu.ru Федеральный центр информационных образовательных ресурсов (ОМС)
- http://pedsovet.su Педагогическое сообщество
- http://school-collection.edu.ru Единая коллекция цифровых образовательных ресурсов
- компьютерный практикум в электронном виде с комплектом электронных учебных
- средств, размещённый на сайте:
- http://ftp.csdep.mephi.ru
- http://ito-xxi.mephi.ru/Lambda/Pilot.htm
- материалы для подготовки к итоговой аттестации по информатике в форме ЕГЭ,
- размещённые на сайте материалы
- методическое пособие для учителя

Для реализации учебного курса «Программирование» необходимо наличие компьютерного класса в соответствующей комплектации

Требования к комплектации компьютерного класса

Наиболее рациональным с точки зрения организации деятельности детей в школе

является установка в компьютерном классе13-15 компьютеров (рабочих мест) для

школьников и одного компьютера (рабочего места) для педагога.

Предполагается объединение компьютеров в локальную сеть с возможностью выхода в Интернет, что позволяет использовать сетевые цифровые образовательные ресурсы.

Минимальные требования к техническим характеристикам каждого компьютера

следующие:

- суперкомпьютер
- процессор не ниже Celeron с тактовой частотой2 ГГц;
- оперативная память не менее256 Мб;
- жидкокристаллический монитор с диагональю не менее 15 дюймов;
- жёсткий диск не менее 80 Гб;
- клавиатура;
- мышь;
- устройство для чтения компакт-дисков(желательно);
- аудиокарта и акустическая система(наушники или колонки).

Кроме того в кабинете информатики должны быть:

- принтер на рабочем месте учителя;
- проектор на рабочем месте учителя;
- сканер на рабочем месте учителя

Требования к программному обеспечению компьютеров

На компьютерах, которые расположены в кабинете информатики, должна быть установлена операционная система Windows или Linux, а также необходимое программное

обеспечение:

- программный комплекс ROOT
- текстовый редактор(Блокнот или Gedit) и текстовый процессор(Word или

OpenOffice.org Writer);

- табличный процессор(Excel или OpenOffice.org Calc);
- среда программирования С++

Программа разработана			Козлов	Д.А
	«	>>		2020Γ