Решения

Задач заключительного тура олимпиады «Росатом» 2016-2017 учебного года Математика, 11 класс, комплект 2

1. При каких натуральных n уравнение $\log_2 x + \log_2 x^3 + \log_2 x^5 + ... + \log_2 x^{2n-1} = 5040$ имеет рациональное решение?

1. Ответ: n = 1, 2, 3, 4, 6, 12

Решение

Преобразование уравнения:

$$1+3+5+...+(2n-1) = n^2 \rightarrow n^2 \log_2 x = 5040 = 2^4 \cdot 3^2 \cdot 5 \cdot 7$$

Уравнение имеет рациональное решение, если $5040\,$ делится на $n^2\,$ нацело. Это бывает при $n=2,4,3,6,12\,$

2. Найти наибольшее значение выражения |x|+|y|+|z| для троек (x;y;z) , удовлетворяющих системе $\begin{cases} \sin x \cdot \sin(x+y) \cdot \sin(x+y+z) = 0 \\ x^2 + y^2 + z^2 = \frac{\pi^2}{3} \end{cases}$. Найти тройки (x;y;z) , для которых наибольшее

значение достигается.

2. Ответ: 1)
$$(|x|+|y|+|z|)_{\max} = \pi$$
; 2) шесть троек $(x;y;z) = \pm \left(\frac{\pi}{3}; \frac{\pi}{3}; \frac{\pi}{3}\right), \pm \left(\frac{\pi}{3}; -\frac{\pi}{3}; \pm \frac{\pi}{3}\right)$

Решение.

Выражение $|x|+|y|+|z| \le \pi$, для всех троек (x;y;z) , удовлетворяющих второму уравнению системы (на сфере), поскольку любая из плоскостей $\pm x \pm y \pm z = a$ при $a > \pi$ удалена от начала координат на расстояние большее, чем $\frac{\pi}{\sqrt{3}}$ и со сферой общих точек не имеет. Если x,y,z одного знака, то плоскости $x+y+z=\pm\pi$ касаются сферы в точках $\left(\frac{\pi}{3};\frac{\pi}{3};\frac{\pi}{3}\right)$ и $\left(-\frac{\pi}{3};-\frac{\pi}{3};-\frac{\pi}{3}\right)$, а их координаты удовлетворяют первому уравнению системы. Если знаки x и y противоположны, то четыре плоскости $x-y\pm z=\pm\pi$ также касаются сферы в четырех точках $\pm\left(\frac{\pi}{3};-\frac{\pi}{3};\pm\frac{\pi}{3}\right)$, координаты которых удовлетворяют первому уравнению. Если x и y одного знака, то значение выражения |x|+|y|+|z| , равное π , возможно в двух точках $\pm\left(\frac{\pi}{3};\frac{\pi}{3};-\frac{\pi}{3}\right)$, координаты которых не удовлетворяют первому уравнению системы.

- **3.** Целые числа $2a^2$ и 3a имеют одинаковые остатки при делении на 18. Какие ненулевые остатки может иметь число a>0 при делении на 18?
- **3.** Ответ: r = 6, r = 12

Решение. $a = 18m + r, 1 \le r \le 17$

Число $2a^2-3a=2(18m+r)^2-3(18m+r)=18k+2r^2-3r\,$ делится на 18, если $2r^2-3r=18t,\,t\in Z\to t=\frac{r(2r-3)}{18}\,$ целое число. Поскольку $2r-3\,$ число нечетное, число r должно быть четным

$$r = 2k, 1 \le k \le 8$$
 . Тогда $t = \frac{k(4k-3)}{9}$ - целое число.

Случай 1. k = 3m, m = 1, 2

$$t=rac{m(12m-3)}{3}=m(4m-1)$$
 целое при $m=1$ и $m=2$, поэтому годятся $k=3$ и $k=6$. Тогда допустимое значение остатков $r=6$ и $r=12$

Случай 2.
$$4k-3=9s \to 9s-4k=-3 \to \begin{cases} s=1+4u \\ k=3+9u, u \in Z \end{cases}$$

Поскольку в этом случае k делится на 3 (случай 1), никаких новых решений для r не возникает.

4. Через случайно выбранные три вершины куба с ребром 2 проводится плоскость. Найти вероятность того, что площадь сечения превзойдет 5. Допускается, что эти вершины принадлежат одной грани куба.

4. Ответ:
$$P(A) = \frac{3}{7}$$

Решение

Площадь сечения плоскостью, содержащей хотя бы три вершины куба, принимает три возможных значения. Первое $s_1=\frac{a^2\sqrt{3}}{2}$, если ни какие две вершины не принадлежат одному ребру куба (правильный треугольник со стороной $a\sqrt{2}$). В первом варианте a=2, поэтому $s_1=2\sqrt{7}\approx 3,46$.

Второе значение площади $s_2=a^2$ реализуется в случае, когда три вершины лежат в одной грани. В первом варианте $s_2=4$. Третье значение $s_3=a^2\sqrt{2}\;$ реализуется в случае, когда две вершины принадлежат одному ребру, а третья вершина не лежит в грани, которой это ребро принадлежит. В первом варианте $s_3=4\sqrt{2}\approx 5,65$. Таким образом, в условии варианта 1 говорится о вероятности того, что будет реализовано s_3 .

Общее число различных троек вершин, через которые может проходить плоскость сечения, равно $n=C_8^3=\frac{8\cdot 7\cdot 6}{2\cdot 3}=56$. Если фиксировать одну из восьми вершин куба, то существует единственная тройка вершин (включая выбранную вершину), которой соответствует площадь s_1 . Таким образом, число благоприятствующих этому событию троек равно $m_1=8$. Если фиксировать одну из 6 граней, то число различных троек вершин, реализующих s_2 равно $C_4^3=4$. Таким образом, число различных троек, благоприятствующих s_2 равно $m_2=4\cdot 6=24$. Если фиксировать пару

параллельных ребер, не лежащих в одной грани (таких пар 6), то число различных троек вершин, благоприятствующих s_3 равно $C_4^3=4$, поэтому общее число троек благоприятствующих этому событию равно $m_3=6\cdot 4=24$. Вероятность искомого события равна $P(A)=\frac{m_3}{n}=\frac{24}{56}=\frac{3}{7}$.

5. Целое число n таково, что $\cos \frac{\left(2n^2+n+1\right)\pi}{2} = 1$, а уравнение $\sin x \cdot \sin 5x \cdot \sin nx = 1$ имеет решение. Найти все такие n.

5. Ответ: $n = 4m + 1, m \in \mathbb{Z}$

Решение.

Из первого условия
$$\cos\left(n^2\pi+\frac{(n+1)\pi}{2}\right)=1 \to (-1)^{n^2}\cos\left(\frac{(n+1)\pi}{2}\right)=1$$
 . Если $\cos\left(\frac{(n+1)\pi}{2}\right)=1$, то
$$\frac{(n+1)\pi}{2}=2\pi m \to n=4m-1, m\in Z \text{ . Тогда } (-1)^{n^2}=-1, \ \forall m \text{ и уравнение решений не имеет.}$$

Если
$$\cos\left(\frac{(n+1)\pi}{2}\right) = -1 \to \frac{(n+1)\pi}{2} = \pi(2m+1) \to n = 4m+1 \to (-1)^{n^2} = -1, \ \forall m \in \mathbb{Z}$$
 . Таким образом, допустимы для второго уравнения $n = 4m+1$.

Каждый из синусов левой части уравнения по модулю равен 1.

Случай 1. $\sin x = 1$

$$x=rac{\pi}{2}+2\pi k,\,k\in Z
ightarrow 5x=rac{5\pi}{2}+10\pi k
ightarrow \sin 5x=1$$
 для всех k

Тогда
$$\sin(4m+1)x = 1 \rightarrow \sin(4m+1)\left(\frac{\pi}{2} + 2\pi k\right) = \sin\frac{(4m+1)\pi}{2} = \sin(2\pi m + \frac{\pi}{2}) = 1, \forall m \in \mathbb{Z}$$

Таким образом, n = 4m + 1 входит в ответ.

Случай 2. $\sin x = -1$

$$x = -\frac{\pi}{2} + 2\pi k, k \in \mathbb{Z} \to 5x = -\frac{5\pi}{2} + 10\pi k \to \sin 5x = -1$$

Произведение синусов в левой части уравнения равно 1, если $\sin nx = 1$

$$\sin(4m+1)x = \sin\left(4m+1\right)\left(-\frac{\pi}{2} + 2\pi k\right) = \sin\left(2m\pi - \frac{\pi}{2}\right) = -1, \forall m$$

Таким образом, в случае 2 решений нет.

6. Две параллельные прямые, расстояние между которыми1, пересекают прямоугольник размерами 3×5 под углом $\alpha = arctg \frac{3}{4}$ к его стороне. Найти максимальное возможное значение суммы длин отрезков этих прямых, принадлежащих прямоугольнику.

6. Ответ:
$$L_{\text{max}} = \frac{55}{6}$$

Вариант 0

Две параллельные прямые, расстояние между которыми h, пересекают прямоугольник размерами $a \times b$ под углом α к его стороне. Найти максимальное возможное значение суммы длин отрезков этих прямых, принадлежащих прямоугольнику.

Решение. Для определенности на рис. $a \le b$.

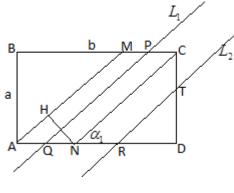


Рис 1

На рис 1 проведены отрезки AM и CN под углом $lpha_1$ к стороне AD . Значение $lpha_1$ определяется условием того, что расстояние между прямыми AM и CN равно h :

$$AN = b - a \cdot ctg\alpha_1$$
, $HN = AN \sin \alpha_1 \rightarrow (b - a \cdot ctg\alpha_1) \sin \alpha_1 = h \rightarrow b \sin \alpha_1 - a \cos \alpha_1 = h$ (*)

Случай 1. Прямые
$$L_{_1}$$
 и $L_{_2}$ образуют угол $lpha$ со стороной AD , $lpha \in \left[lpha_{_1}; \frac{\pi}{2}\right]$

При фиксированном lpha максимальное значение суммы $L=l_1+l_2$ длин отрезков PQ и RS равно $2CN=rac{2a}{\sinlpha}$ потому, что расстояние между прямыми AM и CN не меньше h и на отрезке MC можно разместить точки P и T прямых L_1 и L_2 .

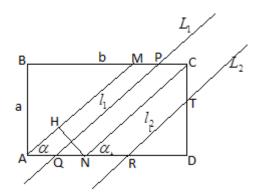


Рис 2

Максимальное значение L на отрезке $lpha\in\left[lpha_1;rac{\pi}{2}
ight]$ соответствует минимальному углу, т.е. $lpha=lpha_1$,

определяемому уравнением (*),
$$L_{1,\text{max}} = \frac{2a}{\sin \alpha_1} = \frac{2a(a^2 + b^2)}{a\sqrt{a^2 + b^2 - h^2} + bh}$$

Случай 2. Прямые L_1 и L_2 образуют угол α со стороной AD , $\alpha \in [\alpha_2; \alpha_1)$, $\alpha_2 = \arcsin \frac{a}{\sqrt{a^2 + b^2}}$

В этом случае, расстояние между прямыми AM и CN меньше h , при $lpha=lpha_2$ оно равно нулю.

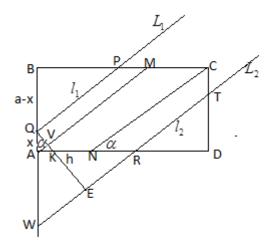


Рис 3

Положение точки Q на стороне AB характеризуется параметром $x\,$ - длиной отрезка AQ .

Тогда из подобия треугольников
$$\dfrac{l_1}{AM}=\dfrac{a-x}{a} o l_1=\dfrac{a-x}{a} \cdot AM=\dfrac{a-x}{a} \cdot \dfrac{a}{\sin \alpha}=\dfrac{a-x}{\sin \alpha}$$
 .

Найдем зависимость l_2 от x:

$$QE = h, AK = xtg\alpha, QK = \frac{x}{\cos \alpha}, KE = h - QK = h - \frac{x}{\cos \alpha}, KR = \frac{KE}{\sin \alpha} = \frac{h\cos \alpha - x}{\cos \alpha \sin \alpha}$$

$$AR = AK + KR = xtg\alpha + \frac{h\cos\alpha - x}{\sin\alpha\cos\alpha} = -\frac{x\cos\alpha}{\sin\alpha} + \frac{h}{\sin\alpha}, \ RD = b - AR = \frac{b\sin\alpha + x\cos\alpha - h}{\sin\alpha}$$

Наконец,
$$l_2 = \frac{RD}{\cos \alpha} = \frac{b \sin \alpha + x \cos \alpha - h}{\sin \alpha \cos \alpha}$$

Тогда при фиксированном $\alpha\in \left[\alpha_2;\alpha_1\right),\, \alpha_2=\arcsin\frac{a}{\sqrt{a^2+b^2}}$ величина

$$L = l_1 + l_2 = \frac{a - x}{\sin \alpha} + \frac{b \sin \alpha + x \cos \alpha - h}{\sin \alpha \cos \alpha} = \frac{a \cos \alpha + b \sin \alpha - h}{\sin \alpha \cos \alpha}$$
 (**)

не зависит от x , но зависит от lpha .

Замечание. Если прямые составляют угол α с меньшей стороной (a > b), то в формулах (*) и (**) надо поменять буквы местами.

В варианте 1
$$a=3, b=5, tg\alpha=\frac{3}{4}, \sin\alpha=\frac{3}{5}, \cos\alpha=\frac{4}{5}, h=1$$

Для случая, когда прямые составляют угол α с большей стороной, уравнение (*) для определения α_1 имеет вид:

$$5\sin\alpha_{1} - 3\cos\alpha_{1} = 1 \rightarrow \alpha_{1} = arctg \frac{3}{5} + arctg \frac{1}{\sqrt{33}} \rightarrow tg\alpha_{1} = \frac{3/5 + 1/\sqrt{33}}{1 - 3/\left(5\sqrt{33}\right)} = \frac{3\sqrt{33} + 5}{5\sqrt{33} - 3}$$

Сравниваем значения $tg\alpha$ и $tg\alpha_1$ для выяснения в каком из интервалов $\left[arctg\,rac{3}{5};\alpha_1
ight]$ или $\left[\alpha_1;rac{\pi}{2}
ight]$ находится заданное α :

$$\frac{3\sqrt{33}+5}{5\sqrt{33}-3} \lor \frac{3}{4} \to 12\sqrt{33}+20 \lor 15\sqrt{33}-9 \to 29 \lor 3\sqrt{33} \to 841 > 297$$
, т.е.

 $tglpha_{_1}>tglpha olpha\in\left[lpha tctgrac{3}{5};lpha_{_1}
ight]$ и имеет место случай 1. Тогда L определяется формулой (**)

$$L_2 = \frac{3 \cdot \frac{4}{5} + 5 \cdot \frac{3}{5} - 1}{\frac{4}{5} \cdot \frac{3}{5}} = \frac{55}{6}.$$

Случай, когда прямые составляют угол lpha с меньшей стороной,

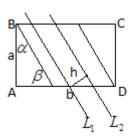


Рис 4

преобразуется в рассмотренный случай заменой угла α на угол $\beta = \frac{\pi}{2} - \alpha$, который образуют

прямые с большей стороной. Поскольку $tg\beta_1 = \frac{3\sqrt{33} + 5}{5\sqrt{33} - 3} < tg\beta = \frac{4}{3} \rightarrow ctg\alpha_1 < ctg\alpha \rightarrow tg\alpha_1 > tg\alpha$.

Поэтому для заданного угла реализуется случай 1 и $L_{\rm l} = \frac{2a}{\sin\beta} = \frac{2a}{\cos\alpha} = \frac{6}{4/5} = \frac{15}{2}$.

Поскольку $L_2 = \frac{55}{6} > L_1 = \frac{15}{2}$, ответом является L_2 .