Заключительный тур олимпиады «Росатом», 9 класс, СНГ, февраль 2020

Вариант № 1

- 1. В 9а классе есть ученики, увлеченные кино, но есть и такие, которые увлечены чтением книг. Шестая часть любителей просмотра кинофильмов читает книги, а 20% книголюбов с удовольствием смотрят кино. В классе есть только три ученика, которые не смотрят фильмов и не читают книг. Сколько учеников в 9а классе, если их не менее 25, но не более 35?
- **2.** На окружности отмечены 18 точек и рядом с каждой из них написано число. Каждое число равно модулю разности двух соседних с ним чисел. Наибольшее из чисел равно единице. Найти их сумму.
- **3.** Хорда AB параболы $y = x^2$ пересекает ось ординат в точке C и делится ею в отношении AC: CB = 2:1. Найти абсциссы точек A и B, если ордината точки C равна 8.
- **4.** Сумма $b_5 + b_6 + ... + b_{2019}$ членов геометрической прогрессии $\{b_n\}$, $b_n > 0$ равна 18, а их произведение $b_5 \cdot b_6 \cdot ... \cdot b_{2019}$ равно 3^{2015} . Найти сумму обратных величин $\frac{1}{b_5} + \frac{1}{b_6} + ... + \frac{1}{b_{2019}}$.
- **5.** Известно, что в трапецию с углом 30^{0} при основании можно вписать окружность и около нее можно описать окружность. Найти отношение площади трапеции к площади, вписанного в нее круга. Найти отношение площади трапеции к площади, описанного около нее круга.

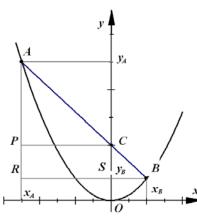
Ответы и решения

1. Пусть x — число кинолюбителей в классе, y — число книголюбов, а z — число кинолюбителей, которые любят читать книги, $x,y,z\in Z$. По условию, $z=\frac{x}{6}=\frac{y}{5}$, следовательно $\begin{cases} x=6z\\y=5z \end{cases}$. Отсюда получаем общее число учеников в классе n=x+y-z+3=10z+3. Поскольку $n\in [25;35]$, имеем двойное неравенство $25\leq 10z+3\leq 35$, откуда $z=3\Rightarrow n=10\cdot 3+3=33$. *Ответ:* 33 ученика.

2. Все написанные числа неотрицательные, поскольку они равны модулю разности соседей. Рассмотрим число с наибольшим значением. Без ограничения общности можно считать, что $x_2 = 1$. Его соседи x_1 и x_3 – два неотрицательных числа, не превосходящие 1, такие что $|x_1 - x_3| = 1$. Этим условиям удовлетворяют только числа 0 и 1 (в любом порядке). Таким образом возможны два расположения тройки чисел: $x_1 = 0, x_2 = 1, x_3 = 1$ и $x_1 = 1, x_2 = 1, x_3 = 0$. Каждая из троек однозначно определяет все остальные числа на окружности. Это будут последовательности 0,1,1,0,1,1,...,0,1,1 и 1,1,0,1,1,0,...,1,1,0 соответственно. В любом случае, на окружности нарисованы 12 единиц и 6 нулей. Их сумма равна 12.

Ответ: 12.

3. Пусть $(x_A; y_A), (x_B; y_B)$ – соответственно координаты точек A и B на параболе. Тогда $y_A = x_A^2$, $y_B = x_B^2$. Рассмотрим ради определенности случай $x_A < 0$, $x_B > 0$. Согласно условию, длины отрезков AC и CB равны 2t и t соответственно, значит, точка A лежит выше точки B. Поскольку $\triangle APC \sim \triangle ARB$, имеет место пропорция $\frac{y_A - y_B}{v_B - 8} = \frac{2t + t}{2t} = \frac{3}{2}$, откуда $y_A = 24 - 2y_B$.



Далее,
$$\triangle CSB \sim \triangle ARB$$
, поэтому
$$\frac{x_B - x_A}{x_B} = \frac{2t + t}{t} = \frac{3}{2}, \quad \text{тогда}$$

$$x_A = -2x_B \Rightarrow x_A^2 = 4x_B^2 \Rightarrow y_A = 4y_B.$$

Наконец, решая систему $\begin{cases} y_A = 24 - 2\,y_B \\ y_A = 4\,y_B \end{cases}, \quad \text{получим что}$ $y_B = 4 \Rightarrow x_B = 2 \Rightarrow x_A = -4.$

Из соображений симметрии, при $x_A > 0$, $x_B < 0$, имеется решение $x_B = -2$, $x_A = 4$.

Omeem:
$$(x_A = -4, x_B = 2), (x_A = 4, x_B = -2).$$

4. Поскольку все члены прогрессии положительны, ее знаменатель q > 0. Легко проверить, что $q \ne 1$. Иначе все рассматриваемые члены прогрессии были бы меньше единицы, и их произведение не могло бы равняться 18. Теперь рассмотрим сумму

$$b_5 + b_6 + \dots + b_{2019} = b_5 (1 + q + \dots + q^{2014}) = b_5 \cdot \frac{1 - q^{2015}}{1 - q} = 18,$$

и произведение

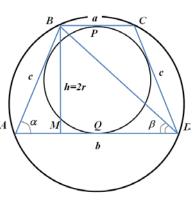
$$b_5 \cdot b_6 \cdot \dots \cdot b_{2019} = b_5^{2015} \cdot q^{1+2+\dots+2014} = b_5^{2015} \cdot q^{\frac{(1+2014)}{2} \cdot 2014} = b_5^{2015} \cdot q^{2015 \cdot 1007} = (b_5 \cdot q^{1007})^{2015} = 3^{2015} \Rightarrow b_5 \cdot q^{1007} = 3.$$

Обратные величины также образуют геометрическую прогрессию со знаменателем $\frac{1}{q}$ и первым членом $\frac{1}{b_5}$, так что получим:

$$\frac{1}{b_5} + \frac{1}{b_6} + \dots + \frac{1}{b_{2019}} = \frac{1}{b_5} \left(1 + \frac{1}{q} + \dots + \frac{1}{q^{2014}} \right) = \frac{1}{b_5} \cdot \frac{1 - \frac{1}{q^{2015}}}{1 - \frac{1}{q}} = \frac{1}{b_5} \cdot \frac{q^{2015} - 1}{(q - 1)q^{2014}} = b_5 \cdot \frac{q^{2015} - 1}{(q - 1)} \cdot \frac{1}{\left(b_5 \cdot q^{1007}\right)^2} = \frac{18}{3^2} = 2.$$

Ответ: 2.

5. Введем обозначения: ABCD – данная трапеция с основаниями AD и BC, r – радиус вписанной окружности, R – радиус описанной окружности, BM = h = 2r – высота трапеции. Поскольку трапеция вписана в окружность, она равнобедренная. Пусть BC = a, AD = b, AB = CD = c. Угол при основании трапеции $\alpha = 30^{\circ}$, угол



 $\angle MDB = \beta$, P, Q – середины оснований.

По свойству описанных около окружности четырехугольников, имеем 2c=a+b. Тогда $\frac{2r}{c}=\frac{4r}{a+b}=\sin\alpha=\frac{1}{2}$, следовательно

$$a+b=8r$$
. Площадь трапеции $S=\frac{a+b}{2}h=(a+b)r=8r^2=\frac{c^2}{2}$.

Площадь вписанной окружности $S_1 = \pi r^2$, поэтому

$$\frac{S}{S_1} = \frac{8r^2}{\pi r^2} = \frac{8}{\pi}.$$

Далее,
$$MD = MQ + QD = \frac{a}{2} + \frac{b}{2} = \frac{a+b}{2} = c$$
. Из $\triangle BMD$ получа-
ем: $\operatorname{tg} \beta = \frac{2r}{c} = \sin \alpha$, откуда $\frac{1}{\cos^2 \beta} = 1 + \sin^2 \alpha = \frac{5}{4}$, следовательно $\frac{1}{\cos^2 \beta} = \frac{\sqrt{5}}{2}$. Таким образом, $BD = \frac{c}{\cos \beta} = \frac{c\sqrt{5}}{2}$.

По теореме синусов,
$$2R = \frac{BD}{\sin \alpha} = c\sqrt{5} \Rightarrow R = \frac{c\sqrt{5}}{2}$$
.

Отсюда площадь описанной окружности $S_2 = \pi R^2 = \frac{5\pi c^2}{4}$.

Тогда
$$\frac{S}{S_2} = \frac{c^2}{2} \frac{4}{5\pi c^2} = \frac{2}{5\pi}$$
.

Ответ: $\frac{S}{S_1} = \frac{8}{\pi}$, $\frac{S}{S_2} = \frac{2}{5\pi}$.

Вариант № 2

1. В 9^6 классе 25% любителей рока с удовольствием слушают классическую музыку, а пятая часть любителей классики слушает рок. Только два ученика в классе не слушают музыку. Сколько учеников в 9^6 классе, если известно, что их не менее 25, но не более 30?

Ответ: 26 учеников.

2. На окружности отмечены 15 точек и рядом с каждой из них написано число. Каждое число равно модулю разности двух соседних с ним чисел. Наибольшее из чисел равно двум. Найти сумму квадратов написанных чисел.

Ответ: 40.

3. Хорда AB параболы $y = x^2$ пересекает ось ординат в точке C и делится ею в отношении AC: CB = 5:3 Найти абсциссы точек A и B, если ордината точки C равна 15.

Omeem:
$$(x_A = -5, x_B = 3), (x_A = 5, x_B = -3).$$

- **4.** Сумма $b_7+b_6+...+b_{2019}$ членов геометрической прогрессии $\{b_n\},\ b_n>0$ равна 27, а сумма их обратных величин $\frac{1}{b_7}+\frac{1}{b_6}+...+\frac{1}{b_{2019}}$ равна 3. Найти произведение $b_7\cdot b_6\cdot...\cdot b_{2019}.$ Ответ: $b_7\cdot b_6\cdot...\cdot b_{2019}=3^{2013}.$
- **5.** Известно, что в трапецию с углом 60^{0} при основании можно вписать окружность и около нее можно описать окружность. Найти отношение периметра трапеции к длине, вписанной в нее окружности. Найти отношение периметра трапеции к длине, описанной около нее окружности.

Omsem:
$$\frac{P}{L_1} = \frac{8\sqrt{3}}{3\pi}, \ \frac{P}{L_2} = \frac{4\sqrt{21}}{7\pi}.$$

Вариант № 3

1. В 9^в классе пятая часть любителей сладкого любят поесть соленого, а треть любителей соленого не отказывается от сладкого. Только четыре ученика не едят ни сладкого, ни соленого. Сколько учеников в 9^в классе, если их не менее 30 и не более 36?

Ответ: 32 ученика.

2. На окружности отмечены 12 точек и рядом с каждой из них написано число. Каждое число равно модулю разности двух соседних с ним чисел. Сумма всех чисел равна 24. Найти наибольшее из них.

Ответ: 3.

3. Хорда AB параболы $y = x^2$ пересекает ось ординат в точке C и делится ею в отношении AC: CB = 3: 2. Найти абсциссы точек A и B, если ордината точки C равна 12.

Ombem:
$$(x_A = -3\sqrt{2}, x_B = 2\sqrt{2}), (x_A = 3\sqrt{2}, x_B = -2\sqrt{2}).$$

4. Сумма $b_6+b_7+...+b_{2018}$ членов геометрической прогрессии $\{b_n\}$, $b_n>0$ равна 6. Сумма тех же членов взятых с чередованием знаков $b_6-b_7+b_8-...-b_{2017}+b_{2018}$ равна 3. Найти сумму квадратов тех же членов $b_6^2+b_7^2+...+b_{2018}^2$.

Omsem:
$$b_6^2 + b_7^2 + ... + b_{2018}^2 = 18$$
.

5. Известно, что в трапецию ABCD, у которой диагональ BD образует с основанием угол 45° , можно вписать окружность и около нее можно описать окружность. Найти отношение площади трапеции к площади, вписанного в нее круга. Найти отношение площади трапеции к площади, описанного около нее круга.

Omeem:
$$\frac{S}{S_1} = \frac{4}{\pi}$$
, $\frac{S}{S_2} = \frac{2}{\pi}$.

Вариант № 4

- **1.** В 9^г классе 25% учеников, играющих в футбол, занимаются шахматами, а каждый седьмой любитель шахмат играет в футбол. Только один ученик не играет в футбол и не играет в шахматы. Сколько учеников в 9^г классе, если их не менее 18, но не более 25? *Ответ*: 21 ученик.
- 2. На окружности отмечены 9 точек и рядом с каждой из них написано число. Каждое число равно модулю разности двух со-

седних с ним чисел. Наибольшее из чисел равно четырем. Найти сумму кубов этих чисел.

Ответ: 384.

3. Хорда AB параболы $y=x^2$ пересекает ось ординат в точке C и делится ею в отношении AC:CB=5:2 Найти абсциссы точек A и B, если ордината точки C равна 20.

Omsem:
$$(x_A = -5\sqrt{2}, x_B = 2\sqrt{2}), (x_A = 5\sqrt{2}, x_B = -2\sqrt{2}).$$

4. Сумма $b_8^2 + b_9^2 + \dots + b_{2020}^2$ квадратов членов геометрической прогрессии $\{b_n\}$, $b_n > 0$ равна 4. Сумма их обратных величин $\frac{1}{b_8^2} + \frac{1}{b_9^2} + \dots + \frac{1}{b_{2020}^2}$ равна 1. Найти произведение $b_8^2 \cdot b_9^2 \cdot \dots \cdot b_{2020}^2$. *Ответ:* $b_9^2 \cdot b_9^2 \cdot \dots \cdot b_{2020}^2 = 2^{2013}$.

5. Известно, что в трапецию ABCD, у которой диагональ BD образует с основанием угол 30° , можно вписать окружность и около нее можно описать окружность. Найти отношение периметра трапеции к длине, вписанной в нее окружности. Найти отношение периметра трапеции к длине, описанной около нее окружности.

Omeem:
$$\frac{P}{L_1} = \frac{4\sqrt{3}}{\pi}, \quad \frac{P}{L_2} = \frac{2}{\pi}.$$