Задания заключительного тура

Отраслевой физико-математической олимпиады школьников «Росатом» 2014-2015 учебного года Математика, 9 класс

- **1.** Саша ехал в автобусе по улице и увидел через окно своего друга Колю, идущего по другой стороне улицы в противоположном направлении. Через две минуты автобус остановился на остановке. Саша быстро вышел из автобуса, перебежал улицу и побежал догонять Колю. Через сколько минут он догонит Колю, если он бежит в три раза быстрее, чем идет Коля и в пять раз медленнее, чем едет автобус? Время выхода из автобуса и перехода улицы не учитывать.
- **2.** Доказать формулу «сложного корня» $\sqrt{a \pm \sqrt{b}} = \sqrt{\frac{a + \sqrt{a^2 b}}{2}} \pm \sqrt{\frac{a \sqrt{a^2 b}}{2}}$ и с ее помощью вычислить

величину
$$\left(\frac{\sqrt{13+\sqrt{48}}-1}{\sqrt{7-\sqrt{24}}+1} \right)^2$$
.

- **3.** $\{a_k\}$ арифметическая прогрессия, S_n —сумма первых n ее членов. Известно, что $S_m:S_n=m(m+2):n(n+2)$ при любых целых, положительных m и n . Найти отношение $a_{2015}:a_{2014}$.
- **4.** Найти целые x и y , для которых $x^4 3x^2y + 2y^2 = 35$.
- **5.** Длины сторон параллелограмма равны 3 и 2. Биссектрисы всех его внутренних углов ограничивают на плоскости многоугольник. Найти отношение его площади к площади параллелограмма.

Ответы и решения

- **1.** v_A, v_k, v_C скорости автобуса, Коли и Саши соответственно, T искомое время. Расстояние между Колей и Сашей в момент остановки автобуса: $2(v_A+v_k)$. Скорость их сближения: v_C-v_k , $v_C=3v_k, v_A=5v_C=15v_k$ условия задачи. $T=\frac{2\left(v_A+v_k\right)}{v_C-v_k}=\frac{2\left(15v_k+v_k\right)}{3v_k-v_k}=16$
- **2.** Данное в условии равенство $\sqrt{a \pm \sqrt{b}} = \sqrt{\frac{a + \sqrt{a^2 b}}{2}} \pm \sqrt{\frac{a \sqrt{a^2 b}}{2}}$ доказывается возведением в квадрат.

1.
$$\sqrt{13+\sqrt{48}} = \sqrt{\frac{13+\sqrt{169-48}}{2}} + \sqrt{\frac{13-\sqrt{169-48}}{2}} = \sqrt{12}+1$$

2.
$$\sqrt{7-\sqrt{24}} = \sqrt{\frac{7+\sqrt{49-24}}{2}} - \sqrt{\frac{7-\sqrt{49-24}}{2}} = \sqrt{6}-1$$

3.
$$\frac{\sqrt{13+\sqrt{48}}-1}{\sqrt{7-\sqrt{24}}+1} = \frac{\sqrt{12}}{\sqrt{6}} = \sqrt{2}.$$

3.
$$S_2 = 2a_1 + d$$
, $S_1 = a_1 \rightarrow S_2$: $S_1 = \frac{2a_1 + d}{a_1} = \frac{8}{3} \rightarrow \frac{d}{a_1} = \frac{2}{3}$

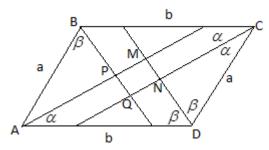
$$\frac{a_{2015}}{a_{2014}} = \frac{a_1 + d \cdot 2014}{a_1 + d \cdot 2013} = \frac{3 + 2 \cdot 2014}{3 + 2 \cdot 2013} = \frac{4031}{4029}$$

4. Разложим левую часть на множители: $(x^2 - y)(x^2 - 2y) = 35$. В целых числах это возможно в следующих восьми случаях:

1.
$$\begin{cases} x^{2} - y = 1 \\ x^{2} - 2y = 35 \end{cases}$$
 2.
$$\begin{cases} x^{2} - y = -1 \\ x^{2} - 2y = -35 \end{cases}$$
 3.
$$\begin{cases} x^{2} - y = 5 \\ x^{2} - 2y = 7 \end{cases}$$
 4.
$$\begin{cases} x^{2} - y = -5 \\ x^{2} - 2y = -7 \end{cases}$$
 5.
$$\begin{cases} x^{2} - y = 7 \\ x^{2} - 2y = 5 \end{cases}$$
 6.
$$\begin{cases} x^{2} - y = -7 \\ x^{2} - 2y = 1 \end{cases}$$
 8.
$$\begin{cases} x^{2} - y = -35 \\ x^{2} - 2y = -1 \end{cases}$$

Целые решения $\begin{cases} x = \pm 3 \\ y = 2 \end{cases}$ имеет только система 5. , остальные системы целых решений не имеют.

5.



На рисунке изображен параллелограмм ABCD с острым углом 2α и четырехугольник MNPQ, образованный биссектрисами внутренних углов. Поскольку $\alpha + \beta = 90^{\circ}$ четырехугольник MNPQ - прямо-угольник. Вычислим его стороны.

$$MN = DM - DN = b \sin \alpha - a \sin \alpha = (b - a) \sin \alpha$$

 $QN = CQ - CN = b \cos \alpha - a \cos \alpha = (b - a) \cos \alpha$

Тогда

$$\begin{split} S_{MNPQ} &= MN \cdot QN = (b-a)^2 \sin \alpha \cos \alpha = \frac{(b-a)^2}{2} \sin 2\alpha \\ S_{ABCD} &= a \cdot b \cdot \sin 2\alpha \\ S_{MNPQ} &: S_{ABCD} = \frac{(b-a)^2}{2ab} \end{split}$$

Поскольку a = 2, b = 3, то $S_{MNPO}: S_{ABCD} = 1:12$.