Изобретение ученых МИФИ может увеличить ресурс реакторов АЭС

16
февраля
2017

Одной из актуальных задач атомной энергетики является повышение ресурса важных элементов АЭС по сроку службы с 4-5 лет до 18-20 лет. При этом многие организации работают над увеличением срока действия топливных элементов, но необходимо также создание органов регулирования нового поколения с компактными радиационностойкими поглощающими сердечниками, обладающими высокой физической эффективностью.

В настоящее время реакторы водно-водяного типа работают на тепловых нейтронах, где мощность регулируется движением нейтронопоглощающих элементов, в качестве материала для которых используется карбид бора. Однако ядерно-физические свойства бора таковы, что его хватает на 4-5 лет эксплуатации.

Необходимость увеличения ресурса ректоров новых АЭС стимулирует поиск новых эффективных нейтронопоглощающих веществ, к которым предъявляют очень большие требования. К таким требованиям относятся: высокая эффективность поглощения нейтронов в процессе эксплуатации; высокая радиационная стойкость; совместимость с конструкционными материалами до температуры 800оС; коррозионная стойкость и, самое главное - длительный ресурс эксплуатации (до 20 лет).

Одним из самых перспективных нейтронопоглощающих материалов для использования в поглощающих элементах систем управления защиты является гафнат диспрозия, который соответствует всем заявленным условиям (исследования в этой области провели сотрудники АО «ГНЦ НИИАР»). Несмотря на то, что диспрозий является довольно дорогостоящим редкоземельным элементом, в перспективе он более выгоден, чем бор. Это связано с тем, что при поглощении нейтронов из него образуются новые нейтронопоглощающие изотопы. Гафний тоже поглощает нейтроны, а с диспрозием он образует плотный керамический материал – гафнат диспрозия, сохраняющий свои свойства при высоких температурах и больших механических нагрузках.

Однако обычный крупнокристаллический порошок гафната диспрозия плохо компактируется, занимает большой объем и с ним неудобно работать в активной зоне реактора. Коллектив ученых отраслевой лаборатории НИЯУ МИФИ под руководством профессора В.Ф.Петрунина предложил для решения проблемы использовать этот материал в наноструктурном состоянии. Необходимо было разработать способ получения нанопорошка гафната диспрозия и способ его компактирования.

Для синтеза нанокристаллических порошков гафната диспрозия был выбран двухстадийный химический способ, основанный на получении гидроксидов или оксигидроксидов соответствующих металлов с последующим прокаливанием прекурсоров до получения оксидов.

картинка в текст.jpg

Электронная микроскопия порошка прекурсора и синтезированного нанокристаллического гафната

В процессе работы был разработан технологический процесс получения однофазных малоагрегированнных нанокристаллических порошков гафната диспрозия методом химического осаждения из растворов солей, изготовлены и аттестованы опытные партии порошков гафната диспрозия, имеющие размер кристаллитов не более 10нм и величину удельной поверхности не менее 10м²/г.

В качестве способа получения керамических таблеток наши специалисты использовали одноосное прессование нанокристаллических порошков с последующим изотермическим отжигом компактов. Плотность керамических таблеток получилась очень высокой – близкой к теоретической (95-98%), это уникальный результат, который в мировой практике пока не достигнут.

По итогам исследований, проведенных по госзаказу ГК «Росатом», получен патент РФ №2565712 на изобретение «Способ получения нанокристаллических порошков гафната диспрозия и керамических материалов на их основе», по которому для получения более мелких порошков и для сокращения длительности процесса получения гафната диспрозия стадию сушки и прокаливания смешанного гидроксида диспрозия и гафния проводят впервые не в муфельной печи, а под действием СВЧ-излучения.

Изобретение ученых МИФИ может быть использовано для изготовления нейтронопоглощающих материалов стержней регулирования систем управления новых типов реакторов с длительным ресурсом эксплуатации.

38