Разработан инновационный алгоритм поиска повторяющихся элементов в геномах

27
сентября
2023

Ученые из НИЯУ МИФИ и ФИЦ Биотехнологии РАН разработали математический алгоритм, позволяющий с высокой точностью находить повторяющиеся элементы в геномах. Они протестировали новый подход на девяти видах бактерий, и в геномах каждого вида обнаружили ранее неизвестные повторы. По мнению исследователей, алгоритм поможет находить новые генетические мишени для увеличения продуктивности бактериальных штаммов или для получения новых антибиотиков. Результаты исследования опубликованы в International Journal of Molecular Sciences.

Кишечная палочка - классический объект микробиологических исследований

 

В геномах большинства многоклеточных организмов (от дрожжей до человека) встречаются повторяющиеся последовательности нуклеотидов, где те являются своего рода буквами, из которых состоит ДНК. Каждый такой повтор имеют длину в несколько сот нуклеотидов, и они раскиданы по всему геному, сообщила доцент кафедры кибернетики Института интеллектуальных кибернетических систем НИЯУ МИФИ Мария Короткова.

«Все вместе они образуют семейство, которое может иметь значительное число отдельных членов. Число таких семейств, а также расположение и количество повторов в каждом семействе различается у разных видов, а потому они могут рассказать об эволюции и происхождении различных видов живых организмов», - рассказала исследовательница.

По ее словам, для поиска в геномах дисперсных повторов существует множество математических алгоритмов, которые даже позволяют обнаружить «искаженные» копии, то есть те повторы, в которых произошли какие-либо мутации и последовательности которых отличаются.

«Однако подобных изменений в процессе эволюции может накопиться так много, что найти в геноме недостаточно похожие друг на друга последовательности становится невозможно», - пояснила Мария Короткова.

Чтобы решить эту проблему, ученые ищут новые подходы для обнаружения дисперсных повторов, «разбросанных» в геномах различных организмов. Ранее такие семейства повторов встречались исследователям только в геномах многоклеточных организмов, тогда как в геномах бактерий они не были известны.

Ученые из НИЯУ МИФИ и Федерального исследовательского центра «Фундаментальные основы биотехнологии» РАН (Москва) предложили новый метод поиска повторяющихся последовательностей.

«Принцип его работы можно сравнить с поиском математической матрицы, состоящих из столбцов и строк, которая наилучшим образом описывает семейство повторов. Предложенный алгоритм является оптимальным по точности нахождения «разбросанных» повторов в полном геноме, так как учитывает возможность замен нуклеотидов и их мутаций», - рассказал профессор кафедры прикладной математики НИЯУ МИФИ Евгений Коротков.

Исследователи протестировали алгоритм на искусственно сгенерированных последовательностях, содержащих по тысяче повторов, часть из которых содержала мутации. Сравнение с широко применяемыми в биоинформатике системами поиска показало, что новый метод позволяет точнее выявлять повторы одного семейства с большим числом мутаций между ними (вплоть до замены половины нуклеотидов в последовательности).

Затем авторы применили алгоритм для поиска повторов в геномах девяти видов бактерий. Им удалось впервые выявить у кишечной палочки три семейства повторов длиной 400–600 пар нуклеотидов, которые суммарно занимают практически 50% всего генома бактерии. Ранее у этого микроорганизма были известны подобные элементы только меньшей длины — до 300 пар нуклеотидов — и в значительно меньшем количестве.

В генетических последовательностях других бактерий удалось обнаружить 1–2 семейства столь же крупных (400–600 пар нуклеотидов) повторов. Найденные семейства повторов обнаружены в генах и представляют собой определенный код, наложенный на гены поверх триплетного кода, обеспечивающего кодировку генами аминокислотных последовательностей.

«Можно сказать, что существует определенная разметка в геномах бактерий, похожая на километровые столбы на дороге. Причем совершенно неважно, на какой нити ДНК находятся гены. Обнаруженный код может служить основой для сворачивания ДНК в нуклеоид, который в значительной степени определяет экспрессию генов бактерий. Можно сказать, что в бактериальной ДНК присутствует код, обеспечивающий её свертку в нуклеотид, и мы получили возможность управлять им. Это открывает большие возможности в создании новых полезных для человека микроорганизмов», - подчеркнула Мария Короткова.

Новый подход, по мнению ученых, поможет анализировать не только бактериальные геномы, но также генетические последовательности многоклеточных организмов, например, животных и растений. Это поможет лучше понять эволюцию геномов и отдельных их элементов, а также, в случае бактерий, найти мишени для создания новых антибиотиков или повышения продуктивности ценных для биотехнологии штаммов. 

53